Finding common structure in multiple time series via
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Abstract

We present structured prior modeling in multiple time series, focusing on
latent component structure for a collection of autoregressive processes. Similar
to the univariate case, the state-space representation of these vector processes
implies that each univariate time series can be decomposed into simple underlying
components. Such components may have a common structure across the series
that define the vector process. The prior specification proposed here extends
the class of prior distributions for univariate autoregressions presented in Huerta
and West (1999) to a multivariate context. Additionally, this approach allows
the consideration of uncertainty on the number of latent processes across the
multiple series and consequently, it handles model order uncertainty in the vector
autoregressive framework. Posterior inference and implementation are developed
via customized Markov chain Monte Carlo (MCMC) methods. Issues related to
inference and exploration of the posterior distribution are discussed. Illustrative
data analyses are presented.
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1 Introduction

The focus of this paper is on developing Bayesian models for the analysis of multivari-
ate time series. Particularly, we propose a prior specification for vector autoregressive
(VAR) processes with coefficient matrices that are diagonal. These models are mo-
tivated by data arising in areas such signal processing. The data usually consist of
multiple signals recorded simultaneously, where each signal has an underlying struc-
ture, possibly but not necessarily quasi-periodic, that can be adequately captured using
autoregressive (AR) models. Univariate time series arising in applied fields that involve
seismic recordings, environmental time series, biomedical signals and speech signals,
to mention just a few examples, have such characteristics and have been successfully
analyzed in recent years via autoregressive processes, or sophisticated models that
involve autoregressive components (Aguilar et al., 1999; Godsill and Rayner, 1998;
West et al., 1999; Krystal et al., 1999; Kitagawa and Gersch, 1996).

One of the main features in the development of structured priors for vector autore-
gressions is that they allow the modeling of uncertainty in the number and form of
the latent processes related to each series. Also, they permit the expression of prior
beliefs on characteristic AR roots, which may be unitary or zero, while simultaneously
allow the inclusion of common latent components across the series, as well as lag-lead
structure. Computational difficulties arise when considering many multiple series with
a rich latent common structure as implied by these structured priors; therefore MCMC
methods for parameter estimation are necessary. Prior on latent component structure
were introduced for univariate AR models in Huerta and West (1999). In this sense,
the models proposed in this paper are an extension to the multivariate framework.

2 Multivariate time series decompositions

In this section, we describe general time series decomposition results for a class of mul-
tivariate time series processes. We discuss such results in detail for the particular case
of what we call diagonal vector autoregressions or DVARs. Similar to the univariate
case, the decomposition results summarized below provide a natural framework for
the structured prior specification that is developed in section 3. Further details and
applications related to decompositions for univariate autoregressions and time-varying
autoregressions can be found in West (1997), Huerta and West (1999), West et al.
(1999) and Prado and Huerta (2002). Here, we revisit the developments on multivari-
ate time series decompositions presented in Prado (1998) and include extensions that
handle a more general model case.

Consider an m-dimensional time series process ¥, = (Y1, - - - , Ym,¢)' that is modeled
with a multivariate dynamic linear model or MDLM (West and Harrison, 1997)

v,=x+v, x=F60, 6,=G6;+w, (1)



where x; is the underlying m-dimensional signal, v, is an m-dimensional vector of ob-
servation errors, F’ is an m x d matrix of constants, 0, is the d-dimensional state vector,
G; is the d x d state evolution matrix and w; is a d-vector of state innovations. The
noise terms v; and w; are zero mean innovations, assumed independent and mutually
independent with variance-covariance matrices V; and W, respectively.

A scalar DLM can be written for each of the univariate components of x;, namely

. Tit = F;Gt
M 0, = G, + w 2)
with F; the i-th column of the matrix F. FEach scalar component z;; of the m-
dimensional signal vector can be broken into latent processes using the decomposition
results for univariate time series presented in West et al. (1999). Assume that the
system evolution matrix Gy is diagonalizable, i.e. that there exist a diagonal matrix
A;, and a matrix B, such that G; = B,A;B, ! A useful way to characterize a diag-
onalizable matrix is by the multiplicities of its eigenvalues. If G; has d* < d distinct
eigenvalues, ¢ 1, ..., Ay g~ With algebraic multiplicities mq 1, . .., mq ¢ Tespectively, then
G, is diagonalizable if and only if m,; = m,; for all « = 1,...,d*, with m,; the ge-
ometric multiplicity of the eigenvalue );;. That is, G, is diagonalizable if and only
if the algebraic multiplicity of each eigenvalue equals its geometric multiplicity. In
particular, if G; has exactly d distinct eigenvalues, then G; is diagonalizable. Note
we are assuming that the number of distinct eigenvalues d*, the number of real and
complex eigenvalues and their multiplicities remain fixed over time. In other words, we
assume that there are exactly ¢* pairs of distinct complex eigenvalues 7 ; exp(+iwy ;)
for 7 =1,...,c* and r* = d* — 2¢* distinct real eigenvalues for j = 2¢* +1,...,d" at
each time ¢. Then, G; = B;A;B; ! with A, the d x d diagonal matrix of eigenvalues,
in arbitrary but fixed order, and B; a corresponding matrix of eigenvectors. For each
t and each model M; define the matrices H; ; = diag(B}F;)B; " for i = 1,...,m, and
reparameterize M; via v, , = H; 0, and 0,1 = H,w;. Then, rewriting (2) in terms of
the new state and innovation vectors, we have

it = 117i,t (3)
Yie = AKiivig1 + iy,

where 1' = (1,...,1) and K;; = H; ;H;, . Therefore x;y can be expressed as a sum
of d* components

c* d*
Tit = Z it + Z Yit,js (4)
j=1

j=2c*+1

where 2;; ; are real-valued processes related to the pairs of complex eigenvalues given

*

by r;exp(tiw,;) for j = 1,...,¢*, and y;,; are real processes related to the real

*

eigenvalues 7, ; for j = 2¢* +1,...,d".



2.1 Decomposition of the scalar components in a VAR(p)

Consider the particular case of an m-dimensional time series process x; = (Z1¢, . - ., Tm,z)’
that follows a VAR(p)

Xy = let—l + ‘PQXt_l + ...+ (}pxt—p + €y, (5)

where ®; are the m x m matrices of AR coefficients and ¢, is the m-dimensional zero
mean innovation vector at time ¢, with covariance matrix X. The VAR(p) process in
(5) is stable (see for instance Liitkepohl, 1993), if the polynomial ®(u) = det(L,, —
®u— ... — ®,uP), with I, the m x m identity matrix, has no roots within or on the
complex unit circle. If a VAR(p) process is stable then it is stationary.

Any m-dimensional VAR(p) process can be written in the MDLM form (1), with
d = mp, vy = 0, and the m x (mp) matrix of constants F' and the (mp)-dimensional
state and the state innovation vectors 8; and w; described by

e, 0 ... 0 Xt €
e, 0 ... 0 X 0

F=| Csoee=| U we=]| L (6)
e, 0 ... 0 Xt—pt1 0

where each e; is an m-dimensional vector whose j-th element is equal to unity and
all the other elements are zeros. Finally, the (mp) x (mp) state evolution matrix G is
given by

e & ... &, P
I, 0, ... 0, O,

G': . .. : ) (7)
0, 0, ... L, O,

with 0,, the m x m dimensional matrix of zeros. The eigenvalues of G satisfy the
equation

det(Ip AP — @A~ — @ NP7 — . — &) =0,

i.e. they are the reciprocal roots of the polynomial ®(u). Therefore, x; is stable if the
eigenvalues of G have modulus less than one. Assume that G has d* < mp distinct
eigenvalues with ¢* pairs of distinct complex eigenvalues r; exp(+iw;) for j =1,...,¢",
and r* = d* — 2¢” real eigenvalues r; for j = 2¢* + 1,...,d*. If G is diagonalizable,
then, using the representations (2) and (3), and the fact that K;; = I for all 4,5 we

have

c* d*
Tit = Z Zitj + Z Yit,j (8)
j=1

j=2c*+1
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where each z;;; is quasi-periodic following an ARMA(2,1) model with characteristic
modulus 7; and frequency w; for all ¢ = 1,...,m. Then, the moduli and frequencies
that characterize the processes z;; ; for a fixed j, are the same across the m univariate
series that define the VAR process. Similarly, y;;, is an AR(1) process whose AR
coefficient is the real eigenvalue r; for alli =1,...,m.

Example. Vector autoregressions with diagonal matrices of coefficients or DVAR(p).
Suppose that we have an m-dimensional VAR(p) process with ®; = diag(¢1 j, - .-, ¢m.;)
for 5 =1,...,p. Then, the characteristic polynomial of the process is given by

m m
d(u) = H(l — piau — Gigu® — ... — P puP) = H ®'(u),

i=1 i=1
ie. ®(u) is the product of the characteristic polynomials associated to each of the
m series. Let of,..., oz;, ...,af" ..., ap" be the reciprocal roots of the characteristic
polynomials ®'(u), ..., ®™(u), respectively, with of # 0 for all 7,j. Assume that for
a fixed series 7, the reciprocal roots ozj- are all distinct, but common roots across series
are allowed, that is aj- = of for some i, k such that i # k and some 7j,[. If there are
c¢* distinct complex pairs of reciprocal roots, denoted by r; exp(+iw;) for j =1,...,c,
r* pairs of distinct real roots r;, for j = 2¢* +1,...,d* with 2¢* +r* = d* < mp, and
G is diagonalizable, then the decomposition (8) holds. It is easy to see that the state
evolution matrix G in this case is diagonalizable by showing that, for any eigenvalue
A # 0 of G, its algebraic multiplicity m, x equals its geometric multiplicity m, », with

mg  the dimension of the characteristic subspace of A, {x : (G — AL,)x = Opyp }-

3 The prior structure

We extend the priors on autoregressive root structure developed in Huerta and West
(1999), to the context of vector autoregressions with diagonal matrices of coefficients or
DVARs. Assume that we have an m-dimensional series. We begin by specifying fixed
upper bounds C; and R; on the number of complex root pairs and real roots of series
1, for s = 1,...,m. Conditional on these upper bounds, we assume a prior structure
on the component roots aj- for j =1,...,2C; + R;, that distinguishes between real and
complex cases. Let us introduce some notation that will be useful to define the prior
structure.

° rj- and /\j- = 27r/w;- are the modulus and the wavelength or period of the j-th
component root of series 1;

® Ty (zlzta1,..zx) denotes the prior probability that a given modulus related to
the series 7, takes a value of z conditional on x being different from the values
T1,. .., Tx. Similarly, Ty pz40,,..25) denotes the prior probability that a given
period related to the series ¢ takes a value of x conditional on z being different
from the values z1,...,zk;



i I'Zi:j = {T{a e ,7‘;-}; Ag:j = {)‘Zia ) A;}; C“Zi:j = (I‘, )‘)zi:j = {(rzi’ )‘Zi)a SERE) (T;'a )‘;)}a
e [,(z) is the indicator function, i.e.,I,(2) =1 if z = y and 0 otherwise;

e U(z|a,b) denotes a Uniform distribution on x over the interval (a, b) and Bn(z|n, p)
denotes a Binomial distribution on x with parameters n and p.

Then, we assume the following prior structure on the component roots of the m series.

(a) Real roots.

Let p(ri.g,,...,rg ) be the prior on the real roots for the m series. Then, the
following structure is proposed
1 1 2 .l 1 -1
P(Tig,y- -+ TR,) = P(TLg,) X (TR, TiR,) X+ X D(TTR, [Tipys - - TTiRM_, )5

with p(r},z ) = Hf:ll p(rjl-), i.e., conditional on the upper bound R;, we assume inde-
pendent priors on the component roots of the first series. Now, for each series k, with
k=2,...,m, we assume a conditionally independent structure on the component roots
of such series, that is,

Ry,

p(r’szk ‘r%:Rla - 7rllc:;£1k_1) = qp(Tf‘ri:Rlv K rllc:gzlk_la rIlc:(j—l))'

j=
Therefore, begin by specifying a fixed upper bound R;. Then, following Huerta and
West (1999), the real root r; for j = 1,..., Ry has a prior with support |rj| < 1 and
density

i~ Ly (1)) + mp o Lo (rf) + m I (rf) + (1= @ _1 = T g — 1) g (1),

where g,(-) is a continuous density over (—1,1), and 7,:. are prior probabilities at
7“31- = —1,0 and 1. The prior point mass at 7“]1- = 0 allows to reduce the number of real
roots of the first series below the specified upper bound R;, while the point masses
at rjl- = =41 allow for roots on the stationary boundary. The continuous part of the
mixture prior specifies the conditional prior on the full stationary region |7~J1| < 1. For
instance, the reference prior is the uniform, g¢,(-) = U(-| — 1,1). Assuming that we
have fixed values of 7,1 ., we have an implied Binomial prior Bn(R;,1 — m,15) on the
number of non-zero roots.

Now, the priors on the autoregressive structure for the real components of the

second series are conditional on the real root components of the first series. Then,

given a specified upper bound Ry, 7"]2- for j =1,..., Ry has prior over support |7’12‘ <1
Rl
2.1 2 2
LR ThG-y Y X T2 (rhlrirosna ;) rt (75) +
k=1

Wrz,_lf(,l)(’l“?) + 7Tr2,010(7']2') + 7T,2,111 (7”]2) +

Rl
(1 - Z WTQ,(T}C\T}C#O:EIJ%:(J._U) - Z WTQ,Q) Gr (TJQ)

k=1 g=—1,0,1



Here the 7,2 . are prior probabilities at r; = r; for k = 1,..., Ry provided that r; is
neither 0, 1 or -1, nor a root previously considered for the second series. This structure
permits to have non-zero prior probabilities at roots previously sampled for the first
series, allowing for repeated roots across series. Again, ¢,(-) is a continuous density
over (—1,1). Following the previous structure for i = 3, ..., m and fixed upper bounds
R; on the maximum number of real roots, 7% has prior over the support |r| < 1 with
density

i—-1 R

il i-1 i i
Tj‘rl:Rl’ <o TR G- ; kz T (rl Irk £0£1,r8 _1))Irk( ;) +

ﬂ-ri,_lj(fl)(rj) + Wri’ojo(r;-) + 7T7.i’1[1(7';-) +

i-1 R
(1 D IPIE~ (rklrk A0, Lrd o) T > Wri,q) gr(r5)-

1=1 k=1 ¢=—1,0,1

(b) Complex roots.

The prior for the complex roots has a similar structure to the prior for the real roots.
Again, we start specifying upper bounds C; on the number of complex roots pairs of
each series and take the defining parameters o} = (rf, A}) where 7} is the modulus and
A= 27r/w;- is the wavelength of the quasi-periodic component z;;; corresponding to
this root pair. Let p(ef.q,, ..., all; ) be the prior on the complex root pairs for the m
series. Then, the following structure is proposed

p(a%:Cla . ,a?fcm) = P(a%:()l) X P(a%:c2|a%:cl) XX P(aﬁcmhicl - '7O‘T:Ei,1)7

with p(aj,c,) = H] 1 p(r7)p(X}). Thus, conditional on the upper bound C, we assume
independent priors on the component roots of the first series such that the moduli
rjl- and the wavelengths )\]1- are independent for all j. The prior is specified over the
support 0 < 7"11- <1land2< )\Jl < A, for a given upper bound ), on the wavelengths.

For each modulus r}, j = 1,...,C}, we assume
J ) ) ) 9

7“]1. ~ Wcl,oIO(’rJl-) + 7Tcl,1[1(7"]1~) +(1—may— Wclyl)gc(T;).

The first component corresponds to a zero root, allowing the number of complex com-
ponents to be less than C';. Again, the second component allows for roots on the sta-
tionary boundary. The component gc(rjl-) is a continuous distribution on 0 < r} < 1,
the conditional prior on the stationary region. The prior on each a]l = (7"]1-,)\}) is
completed by specifying a marginal density hl()\}) for the wavelength over the support
(2, \y). Different choices of g.(rj) and hi()}) can be considered, including Uniform
priors and marginals for )\Jl- based on Uniform priors for the corresponding frequency or
“component reference priors” (Huerta and West, 1999). The priors on the autoregres-
sive structure for the complex pairs of the second series, o2 = (7‘]2-, A?), are conditional

J
on the complex root components of the first series and on the complex roots previously

7



sampled for the second series, i.e., given an upper bound Cj, 7‘; has prior over the
support 0 < r7 < 1 with,
C1
2

’/’?|I‘%:Cl, r1:(j 1) Z ,/TC?,(T’C‘T’C#O l,r1 G— 1))17",% (T]2) + 71'02,0(7']2-) + ’/Tcz,l('f'?)
k=1

k=1

C1
+ (1 — T2 — Te2,1 — Z Te2,(rl|rl#0,1,r2 e 1))) gc( 2)

and the period A% has prior over support (2, \,) with,

Cy
Nletoy oty ~ 2 In(r) LX) + (1—211 )L ( )\2)) h(A3).
k=1
Then, for each series k, with £ = 2,...,m we assume the following conditionally

independent prior structure specified over support 0 < 7"3- <land2< /\2- < Ay,
1—1

. Cl - - .
7‘;'|r%:6‘1, s I-Zl (,1, 1,1‘1 :(j—1) ~ Z Z Mei rk|rk;£0,1,r1 G- 1))17‘5c (T;) + 7Tci,OIO(T;') + 7Tci,lll (7”;)
I=1k=1

k=
i—1 C’l
+(1- Teio — Teil — ZZ//TCz rk|rk;£0,1,r1( 1)) gC( )

I=1k=1

and for the periods of the complex roots,

o i—1 Cp i—1 C .
)\;|01Z1:Cl, ey al Cl l,al J 1 ~ Z Z _[,,.i; .IAI 1 - Z Z .Irgc IAI )] h()\;).
1=1k=1 I=1k=1

3.1 Some aspects of implied prior structure

The priors specified on the roots structure induce priors on the numbers of complex
and real roots associated with each series, and so on model order up to the specified
maximum. These priors also induce priors, of complicated mathematical forms, on
the standard linear autoregressive parameters ¢; s, for 2 =1,...,mand k =1,...,p.
Consider for instance a VAR»(4) model with exactly two real components in each
series Ry = Ry = 2, and one quasi-periodic component in each series, C; = Cy = 1,
taking ma g = Mg =Taog=Te2o=0,mTn 1 =m2 1 =0and m1; =me; =7ma; =
Ty = 0. In addition, we take g,( ?), g¢(r}) and h(X}) as Uniform distributions. A
discrete Uniform distribution is set on the weights m,:. and .. that are not equal
to zero for each i. We explore the implied prior on the eight AR coefficients ¢ =
(D113 P14, P21, -..,P24) via simulation: given a random draw from the prior, we
can trivially compute the corresponding value of ¢. Figure 1 displays two-dimensional
margins of a sample of 10,000 draws from the prior. The two-dimensional margins of the
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Figure 1: Samples from the prior for ¢ in a DVARy(4) model with Ry = Ry = 2 and
Ci=0Cy,=1.

AR coefficients ¢y = (41,1, -.,¢14) and ¢, = (¢a1, - - ., P2.4) (see four by four diagonal
picture blocks in the Figure) show similar displays to the ones of two-dimensional
margins obtained via the implied structured priors on the four coefficients using a
standard univariate AR(4) model (see Huerta and West 1999). The two four by four off
diagonal blocks in the Figure show the correlation structure between the AR coefficients
¢, and ¢,. By construction, the prior for ¢, and ¢, is constrained to the stationary
region and so the shapes in Figure 1 are contained in this region. Note that, as in the
univariate case, the induced prior on ¢ is naturally not uniform.

4 Posterior structure in DVAR models

Under the prior structure just described, posterior and predictive calculations are avail-
able via Markov chain Monte Carlo (MCMC) simulation methods (e.g., Gamerman,
1997). The structure of relevant conditional posterior distributions is briefly outlined
here, details will be reported elsewhere.

Assume we have m series and let X = {x3,...,%x,}, with x; = (Z14,...,Zm)’
be the observed multivariate time series and, given the maximum model order p =
max{p;,i = 1,...,m}, write Xo = {Xo,X_1,...,X_(p—1)} for the latent initial values.

Let X be the m x m variance-covariance matrix. The model parameters are denoted



by a = {og,...,0,,...,a0",...,ap }. Assuming ¥ and X, known, the posterior
inferences are based on summarizing the full posterior p(e, | Xo, X, ). For any subset &
of elements of a, let &\ € denote the complementary elements, that is, e with £ removed.

Our MCMC method is based on a standard Gibbs sampling format, specifically
e foreachi=1,...,m,

— for each j = 2C; + 1,...,2C; + R;, sample the real roots individually from
p(rile\rh, X, Xo, X);

— for each j = 1,...,C;, sample the complex roots individually from the full
conditional, p(a}|a\a%, X, X, X).

Each of these distributions is now briefly described.

(a) Conditional distributions for real roots. Consider any real root aé = 7"3-, for some
series ¢ and some j between 20 + 1 and p;. Given a\r‘ X X, and the DVAR model,
the likelihood function for T provides a normal kernel in 7. Under this mixture prior,
this leads to the mixture posterlor

i—1 R i—1 R!
Z pj rk rk Z pj;qu(T;') + (1 - Z pj,q - Z Zp;,ri)Nt(rﬂm;a M]z)
I=1k=1 q=-—1,0,1 q=-1,0,1 I=1k=1

where N;(-|m, M) denotes the density of the normal N(-|m, M) truncated to (—1,1),
and the values (m;, M J’) and point masses are trivially computed. This mixture poste-
rior is easily sampled with direct simulation of the truncated normal by c.d.f. inversion.

(b) Conditional for complex roots. For each i, index j = 1,..., C; identifies the pair of
complex conjugate roqts (aérl, ab;) with parameters (1}, A%). Let A% be the index set
of all other roots, a\(r}, \%). Then, given a\(r}, %) and X we can d1rectly compute the
filtered time series, z;; = erA;(l ol B)zy, 1fl =idand z;; = [y (1— o B)xt,l Now,
the likelihood on ¢}, = 2r% cos(2r/X;) and ¢%, = —(r})? provides a bivariate normal
kernel with a mean vector and a variance-covariance matrix that are functions of the
filtered time series z1,...,2;m. However, sampling from the resulting conditional
posterior directly is difficult and because of this, following Huerta and West (1999), we
use a reversible jump Markov chain Monte Carlo step.

The structure of the MCMC algorithm in this case is very similar to the structure
of the MCMC algorithm developed in Huerta and West (1999) for the univariate case.
However, the number of computations increases considerably when the number of series
and/or the model order are large.
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Figure 2: Simulated series. Graph (a) corresponds to a process with two pairs of roots
with moduli ri = 0.98, 73 = 0.97 and wavelengths \} = 16.75 and \} = 6.28, respec-
tively. Graph (b) corresponds to a process with roots having moduli and wavelengths of
r? = 0.98, r2 = 0.97, A2 = 16.75 and \3 = 4.0. The series in graph (c) was simulated
using the same root structure used to generate the series displayed in (a).

5 A synthetic data example: a DVAR3(4) with two
pairs of complex roots

In this section, we analyze simulated data from a three-dimensional diagonal vector
AR process with two pairs of complex roots and variance-covariance matrix ¥ = I3.
Figure (2) displays 1,000 data points for each of the three simulated series. The first
series corresponds to an autoregressive process with two pairs of complex roots with
moduli and wavelengths of r{ = 0.98, r3 = 0.97 and A} = 16.75, \J = 6.28, respectively.
The third series has the same root structure as the first series. The second series has
one common pair of roots with the first and the third series, namely 7? = 0.98 and
A? = 16.75, and another pair characterized by r2 = 0.97 and A2 = 4.0. We assume a
prior structure with a maximum of two pairs of complex roots C; = 2, for each series
1 = 1,2,3 and no real roots, i.e. R; = 0 for all 7. The prior masses for the roots on
the stationary boundary were set to zero and a discrete Uniform prior was used for the
prior masses of roots in the stationary region. In addition, we take a discrete Uniform

11



Series | Marginal posterior probabilities

=1 Pr(Tl —0X)=0 Pr(rl ~ C|X) = 1.000
Pr(r; =0/X)=0 Pr(r; ~ C|X) = 1.000

i=2 | Pr(r? =r}|X) =0.321 Pr(r? = r3|X) = 0.074
Pr(r? = 0|X) = 0.015 Pr(r? ~ C|X) = 0.590

Pr(r2 = r{|X) = 0.000 Pr(r3 = rj|X) = 0.069
Pr(r2 = 0|X) = 0.000 Pr(r2 ~ C|X) = 0.931

i=3 | Pr(r? =r}|X) =0.610 | Pr(r} = rj|X) = 0.021

Pr(r} =r?|X) = 0.083 Pr(r? = r2|X) = 0.002
Pr(r? = 0|X) = 0.062 Pr(r? ~ C|X) = 0.222
Pr(ry = r{|X) = 0.010 Pr(ry = r;|X) = 0.474
Pr(r3 = r?|X) = 0.080 Pr(r3 = r3|X) = 0.238

3 _

Pr(rd = 0|X) = 0.000 Pr(r3 ~ C|X) = 0.198

Table 1: Marginal posterior distributions

prior on 7. . for each series, while g.(-) and h(-) are taken as component reference priors
(see Huerta and West, 1999). The posterior summaries presented here are based on a
sample of 1,000 draws taken from 10,000 iterations of the Gibbs sampler, described in
the previous section, after a burn-in period of 10,000 iterations for MCMC convergence.

For this particular example, the number of possible models is 504, which is a large
number, considering we have a small number of series and a small model order. The
number of possible models increases enormously when the number of series and/or AR
model orders for each series increases, so exploring the posterior distributions obtained
under the proposed class of priors is not trivial. In this case, we can explore exhaustively
the marginal posterior probabilities for all the possible roots. Table 1 displays the
results of the marginal posterior probabilities of the zero roots Pr(ri = 0|X), the
repeated roots for the second and third series Pr(rj = r}|X), and the roots that
appear only in each particular series Pr(r;- ~ C|X), where 7“2- ~ C means that rj- is
restricted to the continuous part of its probability density function. The probabilities
that appear in bold correspond to the highest marginal posterior probabilities of each
particular series. For example, for the first series, there is zero posterior probability
that the series was generated from an AR(0) or an AR(1) model. Similarly, for the
second series, the posterior probability that its first root (r?) is the same as the first
root in series one (r1) is 0.321, while the posterior probability of a “new” root, sampled
from the continuous part of the distribution, is 0.590. The probability that the second
root of the second series (r2) is new equals 0.931. For the third series, the most likely
scenario is the one in which the first root (r?) is the same as the first root in the first
series (r]) and the second root (r3) is the same as the second root in the first series
(r?). Therefore, from these marginals probabilities, we can conclude that the most
likely model is the one in which the roots of the first series are different from zero,
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Model Posterior probability
(C,C,ri,C,ri,r3) 0.146
(C,C,C,C,ri,r3) 0.122
(C,C,C,C,ri,r3) 0.062
(C,C,ri,C,ri,13) 0.060
(C,C,C,C,ri,r3) 0.060

Table 2: Most likely models from exploration of the joint posterior distribution.

the roots of the second series are different from zero and also different from the roots
of the first series, and the roots of the third series are the same as the roots of the
first series. This model can be represented in a vector form as M; : (C,C,C, C,ri,rd),
where the first component in the vector corresponds to the first root of the first series,
the second component to the second root in the series and so on. A value of 0 in any
of the components indicates a zero root, C indicates a new or continuous root, and r},
indicates that the root is a repeated root and that it corresponds to the k-th root of
the [-th series.

An easy way of exploring the joint posterior distribution when models are visited
more than once, is by clustering all the models in a tree, using some sort of distance
between the different models, and then looking at the models that are at zero distances.
If there are repeated models then, the most likely models are the models that cluster
in the zero distance groups with more members. Table 2 displays the 6 most likely
models obtained after exploring the joint posterior distribution. We obtain that the
most likely model is given by M, : (C,C,r}, C,r}, ri), that is, a model in which the
first series has two pairs of roots different from zero, the second series has a common
root with the first series and a continuous root and the two roots in the third series are
equal to the roots in the first series. Therefore, the model structure that was visited
more times by the MCMC sampling scheme, was the correct model. Figure 3 displays
the posterior distributions of all the roots conditional on the model (C,C,r{,C,r{, 7).
The first two histograms at the top display the posterior distributions for the modulus
and wavelength of the first root for series one, two and three. The two histograms at
the center show the posterior distributions for the modulus and the wavelength of the
second root of series one and two. Finally, the two histograms at the bottom display
the posterior distributions of the modulus and wavelength of the second root of the
second series.

6 Conclusions

In this paper, we propose a new class of prior distributions for multivariate times series
models that follow a vector autoregressive structure with diagonal coefficient matrices.
The class naturally addresses issues about model uncertainty and characteristic root
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Figure 3:  Posterior distributions for the roots conditional on the model
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structure in a multivariate framework. The structured prior leads to exploration of a
very large model space through MCMC simulation. We suggest the use of clustering
ideas for more efficient simulation of the posterior distributions of interest.

In this work we assumed that the innovation error covariance matrix ¥ is known.
This assumption can be relaxed with the use of inverse-Wishart priors. Alternatively,
representations of > where the matrix elements take simple parametric forms like
o?pli=il lead to prior specifications of only a few parameters. Reference priors as
in Yang and Berger (1994) and the conditionally conjugate prior distributions for co-
variance matrices presented in Daniels and Pourahmadi (2002) can also be used.

For the case of general VAR processes, i.e., VAR processes with coefficient matrices
®; values of arbitrary form, it is not trivial to extend the prior structure developed
for the diagonal case. The latent processes for each of the scalar components in the
multivariate series are defined in terms of the roots of the characteristic polynomial of
the VAR process, but in this case, the VAR characteristic polynomial cannot be written
as the product of individual characteristic polynomials. This extension deserves more
attention and it will be considered for future research.
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