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ABSTRACT

Although climate models have steadily improved their ability to reproduce the observed climate, over the
years there has been little change to the wide range of sensitivities exhibited by different models to a
doubling of atmospheric CO2 concentrations. Stochastic optimization is used to mimic how six independent
climate model development efforts might use the same atmospheric general circulation model, set of
observational constraints, and model skill criteria to choose different settings for parameters thought to be
important sources of uncertainty related to clouds and convection. Each optimized model improved its skill
with respect to observations selected as targets of model development. Of particular note were the im-
provements seen in reproducing observed extreme rainfall rates over the tropical Pacific, which was not
specifically targeted during the optimization process. As compared to the default model sensitivity of 2.4°C,
the ensemble of optimized model configurations had a larger and narrower range of sensitivities around 3°C
but with different regional responses related to the uncertain choice in optimized parameter settings. These
results suggest current generation models, if similarly optimized, may become more convergent in their
measure of global sensitivity to greenhouse gas forcing. However, this exploration of the possible sources
of modeling and observational uncertainty is not exhaustive. The optimization process illustrates an objec-
tive means for selecting an ensemble of plausible climate model configurations that quantify a portion of the
uncertainty in the climate model development process.

1. Introduction

In global climate models (GCMs), unresolved physi-
cal processes are included through simplified represen-
tations referred to as parameterizations. Parameteriza-

tions typically contain one or more adjustable phenom-
enological parameters. Parameter values can be
estimated directly from theory or observations or by
“tuning” the models by comparing model simulations
to the climate record. Because of the large number of
parameters in comprehensive GCMs, a thorough tun-
ing effort that includes interactions between multiple
parameters can be very computationally expensive.

Models may have compensating errors, where errors
in one parameterization compensate for errors in other
parameterizations to produce a realistic climate simu-
lation (Wang 2007; Golaz et al. 2007; Min et al. 2007;
Murphy et al. 2007). The risk is that, when moving to a
new climate regime (e.g., increased greenhouse gases),
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the errors may no longer compensate. This leads to
uncertainty in climate change predictions. The known
range of uncertainty of many parameters allows a wide
variance of the resulting simulated climate (Murphy et
al. 2004; Stainforth et al. 2005; M. Collins et al. 2006).
The persistent scatter in the sensitivities of models from
different modeling groups, despite the effort repre-
sented by the approximately four generations of mod-
eling improvements, suggests that uncertainty in cli-
mate prediction may depend on underconstrained de-
tails and that we should not expect convergence
anytime soon. The question addressed here is whether
a more systematic approach to constraining parametric
uncertainties would be enough to allow independently
developed models to become more convergent in their
predictions of global change.

2. Optimized tuning and uncertainty quantification

The leading cause of the intermodel differences in
sensitivity to CO2 forcing is related to differences in the
treatment of clouds (Cess et al. 1990, 1996; Held and
Soden 2000; Colman 2003; Webb et al. 2006). We hy-
pothesize that the primary source of uncertainty for the
National Center for Atmospheric Research (NCAR)
Community Atmosphere Model version 3.1 (CAM3.1;
W. D. Collins et al. 2006) is related to arbitrary aspects
of selecting precise values for six parameters associated
with the model’s parameterization of clouds and con-
vection (Table 1).

Following Jackson et al. (2004), Bayesian inference is

used along with a stochastic importance sampling algo-
rithm, Multiple Very Fast Simulated Annealing
(MVFSA), to efficiently identify the regions of model
parameter space of CAM3.1 that minimize systematic
differences with 15 sets of observational constraints
given by regional and seasonal climatologies of satellite
and reanalysis data products from January 1990 to Feb-
ruary 2001 (Mu et al. 2004). A number of sensitivity
experiments have been performed with the parameters
in Table 1 and other parameters to establish the impor-
tance of each parameter to simulated climates. We se-
lect candidate values for each of the parameters from
an initially uniform probability prior distribution with
the ranges specified to reflect realistic possibilities
given sensitivity experiments (Murphy et al. 2004;
Stainforth et al. 2005; Mu et al. 2004), the history of
values used in climate model development as marked
within the source code, and examination of values used
within other climate models using the same Zhang and
McFarlane (1995) parameterization for convection as
CAM3.1.

Bayesian inference with the MVFSA stochastic sam-
pling algorithm estimates a “posterior” joint probability
distribution for the uncertain parameter sets m given a
“prior” probability for selecting reasonable values for
m. We include in our inferences of parametric uncer-
tainty a parameter S, which determines, in part, which
model configurations may be deemed acceptable. The
parameter S has its own prior that provides information
about observational and other uncertainties that are
hard to quantify within the metric of model skill E(m):

posterior�m, S� �
exp��SE�m��

�� exp��SE�m�� � prior�m, S� dm dS

prior�m, S�. �1�

TABLE 1. Underconstrained CAM3.1 parameters with default values (asterisk) and ranges of prior distributions and posterior
uncertainties represented by the best-performing models within each of the six independent convergence chains (1–6).
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We refer to the metric of model skill E(m) as a cost
function. It provides a weighted measure of mean
squared differences between model predictions and a
set of observational constraints. This cost function
weights different sources of uncertainty through an in-
verse of the data covariance matrix C�1,

E�m� �
1

2N �
i�1

N

��dobs � g�m��TC�1�dobs � g�m��� i, �2�

where dobs is the set of observations that may be com-
pared directly with model predictions g(m) and super-
script T indicates a matrix transpose. Note that index i
in Eq. (2) applies to the whole expression in the brack-
ets such that model–observational data comparisons
are made from N separate regions and seasons (see
section 2c). Thus E(m) does not explicitly account for
the potentially significant correlations among these ob-
servational constraints. We discuss below how we take
these correlations into account for limiting regions of
acceptability through our choice of scaling factor S,
which, in effect, is a modifier of the data covariance.
This form of the cost function is the appropriate form
for assessing more rigorously the statistical significance
of modeled–observational differences when it is known
that sources of model and observational uncertainty are
Gaussian. We have plotted the distribution of errors
that arise from internal model variability and confirmed
that the resulting distributions are consistent with the
Gaussian assumption (not shown).

The MVFSA sampling algorithm works by taking
random steps in parameter space and at each step run-
ning an 11-yr climate model integration, quantifying
the differences between simulated and observed cli-
mate in terms of a scalar skill score or “cost,” and re-
selecting parameter values based on the skill score so
that the algorithm progressively moves toward re-
gions of the global parameter space that minimize mod-
eling errors. Candidate parameter values are initially
chosen from a uniform prior. However, as sampling
progresses, candidate parameter values are chosen
from a Cauchy distribution whose width becomes in-
creasingly focused on the last accepted model (Ingber
1989). This convergence chain may be repeated numer-
ous times starting from randomly chosen points in pa-
rameter space to make inferences about uncertainty.
With sufficient sampling, MVFSA provides a computa-
tionally tractable approximation to a posterior joint
probability distribution of uncertainties comparable to
Markov Chain Monte Carlo (MCMC) algorithms (Sen
and Stoffa 1996; Jackson et al. 2004; Villagran et al.
2008).

One of the challenges in attaining optimal efficiency
in some MCMC sampling strategies such as the Me-
tropolis–Hastings version of the Gibbs’ sampling algo-
rithm (Hastings 1970) is the choice of the step size that
is taken through parameter space. It is often not pos-
sible to know what this optimal step size should be.
MVFSA uses a range of step sizes to enable it to focus
on sampling only those regions that are relevant to rep-
resenting uncertainties. Our experience suggests this
flexibility also enables the algorithm to be useful and
efficient for a broad range of problems. There also exist
other adaptive sampling algorithms with correct er-
godic properties that have been shown to be flexible
and efficient for estimating unimodal posteriors. These
algorithms automate and optimize for the ideal step
size and result in superior performance over the more
traditional, Metropolis–Hastings-type Gibbs’ samplers
(e.g., Haario et al. 2006; Villagran et al. 2008).

MVFSA selects a distribution of model configura-
tions consistent with prior estimates of sources of un-
certainty. In our case we consider the uncertainty that
comes from representing climate from a relatively short
11-yr time series as well as structural and observational
uncertainties contributing to the systematic biases that
exist between the model and the selected observational
targets. Considered here are six convergence chains of
a single model and we examine the configurations with
the best skill scores after 	41 steps within each chain.
Because we are only considering relatively few chains,
the present analysis is limited to discussing the uncer-
tainty in identifying the optimal parameter settings.
However, the results show that the selected ensemble
of six optimized model configurations is more broadly
representative of estimates of the posterior distribu-
tion. The analysis is meant to model the uncertainty in
climate model development whose goal is the creation
of a single model that best represents observed climate.
The uncertainties in observational, modeling, and struc-
tural uncertainty that are included or represented
within the cost function will impact the algorithms abil-
ity to discern what model is best and, with sufficient
sampling, provides an objective basis for selecting an
ensemble of plausible climate model configurations
that represents the full range of model development
uncertainty given the uncertainties considered.

a. Experiment design

Each experiment testing the sensitivity of CAM3.1 to
combined changes in select parameters follows an ex-
perimental design in which the model is forced by ob-
served sea surface temperatures (SST) and sea ice for
an 11-yr period (March 1990 through February 2001).
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The model includes 26 vertical levels and uses an ap-
proximately 2.8° latitude by 2.8° longitude (T42) reso-
lution. For the experiments testing the sensitivity to a
doubling of atmospheric CO2 concentrations, CAM3.1
is coupled to a slab ocean with prescribed heat flux
adjustments, calculated separately for each configura-
tion, such that each model reproduces the observed
monthly climatological sea surface temperatures with-
out explicitly accounting for ocean dynamics. Thus the
CAM3.1–slab ocean model may only represent the
thermodynamic and not the dynamic response of the
ocean to changes in CO2 forcing. A control simulation
of modern climate is made from a 40-yr-long integra-
tion of the CAM3.1–slab ocean model. Doubled CO2

experiments are also integrated for 40 yr. We use the
final 20 yr for analysis. This process was repeated for
the default and six alternate configurations.

b. Observational constraints

Observational constraints include satellite, instru-
mental, and reanalysis data products. The fields se-
lected were chosen because of the existence of corre-
sponding instrumental or reanalysis data products; they
provide good constraints on top of the atmosphere and
surface energy budgets, and they are fields that are
commonly used to evaluate model performance. The
segments from observations were chosen to overlap the
years and months of the experiment. The exception was
the Earth Radiation Budget Experiment (ERBE) mea-
surements of top of the atmosphere radiative balances
which included years 1985–89 (Barkstrom et al. 1989).
We also included a term constraining the global net
radiative balance at the top of the atmosphere. We had
intended to give this a target of 0.3 W m�2 in order to
compensate for the approximately 0.3 W m�2 brighten-
ing that typically occur for the model when it is coupled
to a slab ocean (P. Rasch, NCAR, 2004, personal com-
munication). However we mistakenly imposed this con-
straint without area weighting, resulting in optimized
configurations that are 4–7 W m�2 out of balance. The
size of the imbalance is comparable to observational
uncertainty, but model development efforts typically
try to keep this number small in order to minimize long
term trends in deep water temperature when the atmo-
sphere is coupled to an ocean GCM. We explore the
implications of this error on our results within the dis-
cussion section. Below is a list of fields that were in-
cluded within the cost function and the corresponding
data targets. All fields, including the data constraints,
were seasonally averaged [December–February (DJF),
March–May (MAM), June–August (JJA), September–
November (SON)] over the time interval indicated.

1) Low-level clouds, 1990–2001, International Satel-
lite Cloud Climatology Project (ISCCP) satellite
observations (Rossow et al. 1991).

2) Midlevel clouds, 1990–2001, ISCCP satellite obser-
vations (Rossow et al. 1991).

3) High-level clouds, 1990–2001, ISCCP satellite ob-
servations (Rossow et al. 1991).

4) Shortwave radiation to surface, 1990–2001, Na-
tional Centers for Environmental Prediction
(NCEP) reanalysis data (Kalnay et al. 1996; Kistler
et al. 2001).

5) Net shortwave top, 1985–89, ERBE satellite obser-
vations (Barkstrom et al. 1989).

6) Net longwave top, 1985–89, ERBE satellite obser-
vations (Barkstrom et al. 1989).

7) Two-meter air temperature, 1990–2001, NCEP re-
analysis data (Kalnay et al. 1996; Kistler et al. 2001).

8) Surface sensible heat flux, 1990–2001, NCEP re-
analysis data (Kalnay et al. 1996; Kistler et al.
2001).

9) Surface latent heat flux, 1990–2001, NCEP reanaly-
sis data (Kalnay et al. 1996; Kistler et al. 2001).

10) Relative humidity (zonal mean), 1990–2001, NCEP
reanalysis data (Kalnay et al. 1996; Kistler et al.
2001).

11) Air temperature (zonal mean), 1990–2001, NCEP
reanalysis data (Kalnay et al. 1996; Kistler et al.
2001).

12) Zonal winds (zonal mean), 1990–2001, NCEP re-
analysis data (Kalnay et al. 1996; Kistler et al.
2001).

13) Sea level pressure, 1990–2001, NCEP reanalysis
data (Kalnay et al. 1996; Kistler et al. 2001).

14) Precipitation, 1990–2001, Climate Prediction Cen-
ter (CPC) Merged Analysis of Precipitation
(CMAP) instrumental record (Xie and Arkin 1996,
1997).

c. Definition of cost function

The cost function used to evaluate model skill [Eq.
(2)] follows the treatment of Mu et al. (2004) in which
squared differences between model predictions and ob-
servations are projected onto a truncated set of empiri-
cal orthogonal functions (EOFs) representing larger
spatial regions of correlated year-to-year variability.
The EOFs are generated from the seasonal interannual
variability contained within the 900-yr-long time series
from the b30.004 control integration of NCAR Com-
munity Climate System Model, version 3 (CCSM3;
W. D. Collins et al. 2006). Each EOF eigenvalue is a
measure of the variance for each mode of variability
and provides a way to weight the significance of any
discrepancies between observations and model predic-
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tions. Because these discrepancies need to be repre-
sented by a sum of EOFs, the 11 fields defined on a
latitude–longitude grid have been subdivided into six
30° nonoverlapping latitude bands. The three zonally
averaged fields were subdivided by hemisphere. More-
over, the analysis is performed with seasonal means
(DJF, MAM, JJA, and SON) so that the cost function
can constrain the amplitude of the seasonal cycle. The
only exception to regional and seasonal components
of the cost function is the constraint on global mean
(annual mean) net radiative balance at the top of the
atmosphere. Therefore there are a total of 289 compo-
nents of the cost function that include 11 latitude–longi-
tude fields over 6 regions and 4 seasons, 3 latitude–
height fields over 2 regions and 4 seasons, and one field
representing the global radiative balance. The total cost
function is mostly a straight averaging of these 289 com-
ponents with the exception of the three cloud levels
which were weighted as a single cloud field. The fields
with the largest (smallest) cost values also tend to be
fields with the smallest (largest) variability (Fig. 2, com-
ponent cost values for the default model is shown in
parentheses). Thus model-data distance for each field is
expressed in terms of the size of interannual variability
for that field.

d. Renormalization factor “S”

To select candidate model configurations that repre-
sent the intended uncertainties, one needs the cost
function to be normalized with respect to these uncer-
tainties. That is, the MVFSA algorithm is designed to
search through candidate parameter sets that are within
a certain cost function distance from the global mini-
mum, passing over places that are notably badly per-
forming and searching more thoroughly where the per-
formance is acceptable. A proper normalization is in-
sured through a two-step process: First, for each field,
region, and season, the components of the cost function
are scaled in such a way that the effects of natural vari-
ability resulted in the same 1-unit standard deviation
range in cost values over a large number of control
experiments that only differed by their initial condi-
tions. For this purpose 83 control experiments of the
default configuration CAM3.1 were run with different
initial conditions. The second step in the normalization
process is to consider correlations that exist among the
cost components themselves. These correlations were
found to be quite significant leading to a reduction in
the effects of natural variability on the cost function
from 
 � 1 unit to only 
 � 0.12 cost units. One may
compensate for this omission in the cost function by
rescaling the cost function using scaling factor S � 
�1

(i.e., S � 8.33; see Gelman et al. 2004), which has the

effect of focusing sampling around the regions of maxi-
mum likelihood. However, rather than make S a con-
stant factor, we allow the prior distribution of S to scale
inversely with model skill as measured by E(m). If the
model could provide a perfect match to observations,
then the effects of internal variability would be the
main source of uncertainty in discerning the goodness
of fit between one model configuration and another.
However, all climate models show significant compen-
sating errors and systematic biases that give rise to an
irreducible component of E(m) (McWilliams 2007).
Therefore by scaling S inversely with E(m) the regions
of acceptability are inevitably broadened. The conve-
nient functional form of the prior for S, being a modi-
fier of the inverse of the data covariance matrix within
Eq. (1), is a gamma distribution function. During the
course of sampling, E(m) is allowed to modify the mean
and variance of the gamma distribution according to

S �
�

� � E�m�
, �3�

var�S� �
�

�� � E�m��2 . �4�

Here, � and 
 are parameters that control the mean and
variance of the gamma distribution using information
about the effects of natural variability on E(m). Spe-
cifically, if E(m) were properly normalized with respect
to this variability, � and 
 would be equal, with a vari-
ance in S determined from the uncertainty in estimating
the mean value of S from a limited number of control
experiments that we have run (number � 83). Because
the emphasis in the present analysis concerns the un-
certainty of near-optimal choices of model parameters
from a limited sampling of the posterior distribution
(i.e., the uncertainty in the optimization), we defer to
future work to discuss the details of the treatment of S
in our approach to quantifying the effects of observa-
tional and other sources of uncertainty in our estimates
of parametric uncertainties.

3. Results

Of the 518 experiments that were completed, 332
achieved skill scores that were smaller than the default
case and include a broad range of parameter values. Six
configurations were selected for further analysis, one
from each convergence chain based on the maximum
skill after 	41 experiments (Table 1). Sampling then
continued in order to consider the degree to which
these six samples were representative of the 332 sample
posterior distribution of parametric uncertainties (Fig.
1). The six parameter sets are broadly representative of
the posterior distribution with particularly wide-
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ranging values selected for parameters TAU and
RHMINH and more tightly constrained values for
ALFA, ke, RHMINL, and c0.

Relative to the default configuration, systematic er-
rors of the optimized model configurations were re-
duced by an average of 7% (Fig. 2a). There were con-
sistent reduction in errors related to low-level clouds
(averaging 3% improvement, Fig. 2b), shortwave radia-
tion reaching the surface (averaging 14% improvement,
Fig. 2e), surface latent heat flux (averaging 4% im-
provement, Fig. 2k), zonal mean air temperature (av-
eraging 4% improvement, Fig. 2m), zonal winds (aver-
aging 6% improvement, Fig. 2n), and sea level pressure
(averaging 5% improvement, Fig. 2o), and precipita-
tion (12% improvement, Fig. 2p). Some fields became
worse such as midlevel clouds (averaging �10% deg-
radation, Fig. 2c), high-level clouds (averaging �6%
degradation, Fig. 2d), and net shortwave radiation at
the top of the atmosphere (averaging �7% degrada-
tion, Fig. 2f). There were mixed results or relatively
minor changes in skill for the remaining fields. Thus,
the similar cost values achieved for all six optimal
model configurations is achieved through different
compromises in model skill for predicting constrained
fields.

The optimization process also provided unantici-

pated performance gains in the frequency distribution
of hourly rain rates (Fig. 3). The default configuration
of CAM3.1 as well as many other climate models typi-
cally drizzles too often with little ability to simulate
observed heavy rainfall events (Deng et al. 2007; Wil-
cox and Donner 2007). Five of the six optimized
CAM3.1 configurations were able to capture the ob-
served distribution of heavy and light rainfall events of
the tropical Pacific ITCZ region. Because the variabil-
ity of rainfall rates is not targeted in the model skill
scores, these improvements could have only been
achieved indirectly through the long-term seasonal
mean constraints that were included. There also ap-
pears to be a correlation between model configurations
with larger values of the rate at which clouds consume
available potential energy (TAU), and the emergence
of extreme rainfall rates.

Tests were performed to evaluate the extent to which
the parametric uncertainties remaining among the op-
timized configurations would affect the model’s equi-
librium response to a doubling of atmospheric CO2

concentrations. The default CAM3.1 configuration sen-
sitivity of 2.4°C near-surface global mean annual mean
air temperature change is on the lower end of sensitivi-
ties relative to the scatter among two generations of
models (Fig. 4). However, after optimization, five of the

FIG. 1. Posterior probability for 6 parameters of CAM3.1 important to clouds and convection (see Table 1): (a) ALPHA, (b) TAU,
(c) ke, (d) RHMINH, (e) RHMINL, and (f) c0. The histograms are derived from the 332 experiments whose cost values were the same
or showed an improvement over the default model configuration. The parameter values of the default model are given by an asterisk
(*). The values of the top performing 6 parameter sets are labeled by the particular line number that produced them.

15 DECEMBER 2008 J A C K S O N E T A L . 6703



six optimized configurations increased in sensitivity to
around 3°C and 3.1°C sensitivity with the remaining
optimized configuration having an even larger sensitiv-
ity at 3.4°C. The uncertainty in evaluating a model’s
sensitivity from the 20-yr-long experiments is less than
0.1°. Therefore, the shift in the model’s sensitivity is
significant. The narrow spread in sensitivities among
the six-member ensemble, despite the wide range in
parameter values considered, suggests that either the
observational constraints that were placed on the selec-
tion of parameter values were informative enough to
constrain the global balance of internal feedbacks that
control the model’s response to the change in radiative
forcing, or the selected parameters are not the primary
sources of uncertainty that contribute to the 2°–6°C

range in sensitivities seen in multimodel intercompari-
sons (LeTreut and McAvaney 2000; Cubasch et al.
2001; Alley et al. 2007).

The convergent predictions on a global scale oc-
curred with slightly different physical balances, result-
ing in a significant spread of predictions at regional
scales (Fig. 5). Many of the regional differences among
the model configurations occurred within the tropics
where the parameters considered have their largest in-
fluence. The parameters also affect changes in the mod-
el’s response in the mid–high latitudes. Most notably,
the 	25% uncertainty in near-surface air temperatures
southwest of Greenland is associated with large
changes in surface wind stress among the different
model versions. These wind stress changes appear to be

FIG. 2. Impact of stochastic optimization on CAM3.1 skill in predicting seasonal and regional climatologies of 15 fields commonly
used for climate model development. (a)–(p) Each bar represents the change in skill of one of six optimized configurations of CAM3.1
as compared to the default configuration. The size of each bar indicates the percent improvement (blue) or degradation (red) in skill
score for (a) a weighted average total and (b)–(p) the 15 observational targets. The skill score for the default configuration is given in
parentheses.
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FIG. 3. Histograms of hourly rain rates from the tropical Pacific ITCZ (12°N–0°, 130°E–
90°W). The default configuration of CAM3.1 fails to capture the heavy rainfall rates seen in
the TRMM observations (Deng et al. 2007). Most of the optimized versions of CAM3.1
provided a much closer match to observations despite the fact that these observations of
high-frequency rain variability were not included in the stochastic inversion cost function.

FIG. 4. Equilibrium global and annual mean response of surface air temperature and pre-
cipitation change to a doubling of atmospheric CO2 concentrations. Blue diamonds and red
triangles show response of atmospheric models used within the Second and Third Assessment
Reports of the Intergovernmental Panel on Climate Change (IPCC; data reproduced from
Fig. 9.18 of Cubasch et al. 2001). The corresponding sensitivity of the CAM3.1 model is
indicated by the asterisk. Each of the six optimized CAM3.1 model sensitivities are indicated
by number.
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affecting the production and export of sea ice from the
Labrador Sea and their respective radiative feedbacks.
The largest uncertainties are associated with predic-
tions of tropical rainfall where the ensemble spread ac-
counts for upward of 160% uncertainty in the predicted
shifts in the north–south position of the intertropical
convergence zone.

We have explored the sensitivity of the results to
changes in the constraint on the global radiative bal-
ance. Without the area weighting on the global mean
radiative balance, the six model configurations ana-
lyzed were 4–7 W m�2 out of balance. We reran three
convergence chains (250 additional experiments) with
area weighting of the global radiative balance. We se-
lected three of the top performing models, one from
each chain, for further analysis. The results are broadly
similar insofar as we found 1) a 7% maximum reduction
in the cost function, 2) a wide range in parameter value
combinations, 2) a range of both improvements and
degradations in particular components of the cost func-
tion, 3) dramatic improvements in capturing observed
rain-rate extremes over the tropical Pacific, and 4) a
narrow spread in sensitivities to a doubling of atmo-
spheric CO2 concentrations. However, in detail, the

global radiative balance constraint alters particular re-
sults. For instance, marginal profiles of the posterior
probability derived from this new ensemble were
shifted, selecting model configurations that were previ-
ously deemed unlikely. Aside from zonal mean air tem-
peratures, precipitation, and net shortwave radiation at
the top of the atmosphere, which all show significant
	10% reductions in component cost values, there is
less consistency from our previous results as to which
fields improved or degraded. The three new configura-
tions’ sensitivity to a doubling of atmospheric CO2 con-
centrations are 2.6°, 2.7°, and 2.8°C, or slightly smaller
than the predominantly 3°C sensitivity for configura-
tions previously discussed.

4. Discussion and conclusions

The MVFSA sampling strategy to quantify uncer-
tainties differs in some potentially important ways from
previous or proposed approaches that make different
assumptions about the smoothness and linearity of the
climate model response to uncertain parameter choices
(Murphy et al. 2004; Annan and Hargreaves 2004;
Stainforth et al. 2005; M. Collins et al. 2006; Murphy et

FIG. 5. Regional response and uncertainties of predictions from an ensemble of optimized CAM3.1 configurations included within
Fig. 3 to a doubling of atmospheric CO2 concentrations. (a) Response of annual mean surface air temperature. (b) Response of annual
mean precipitation. (c) Regional uncertainties in predictions of annual mean surface air temperature calculated from the range in
regional responses divided by the ensemble mean. (d) Regional uncertainty in predictions of annual mean precipitation. Uncertainties
are expressed in term of the percent range in responses that occurred among the ensemble members to the ensemble average response.
Areas with no color in panels (c) and (d) indicate forced response is more than 1.2 times smaller than a signal that can be explained
by natural variability.

6706 J O U R N A L O F C L I M A T E VOLUME 21

Fig 5 live 4/C



al. 2007; Annan and Hargreaves 2007). The smoothness
of the response surface itself will depend on the treat-
ment of uncertainties between model predictions and
observational data within the cost function, which itself
can be a matter of scientific judgment. The gulf be-
tween the two is large enough to call into question the
assumption that the relative likelihood of any given
model configuration can measured by an exponential
function of the cost function [e.g., Eq. (1)] (Frame et al.
2007; Stainforth et al. 2007). The MVFSA sampling
strategy has the capacity to resolve limited regions of
parameter space that may be missed by strategies that
depend on interpolation or emulation from a limited
number of experiments (Annan and Hargreaves 2007;
Murphy et al. 2007; Rougier and Sexton 2007). It is not
clear from the present results that are based on a lim-
ited number of convergence chains whether other strat-
egies would have been sufficient. From a model devel-
opment perspective that is perhaps most interested in
identifying points of maximum likelihood (minima in
the response surface), it was quite difficult to find pa-
rameter combinations that improved model skill
(�20%, in the case with the constraint on global radia-
tive balance specified correctly) and that was with a
focused sampling strategy.

Currently all climate models have large systematic
modeling errors with respect to observations consistent
with those shown in Fig. 2. Stochastic sampling of six
parametric uncertainties related to clouds and convec-
tion was only able to improve the metric of model skill
by 7%–10% although the optimized model did capture
observed extreme rain rates over the tropical Pacific,
which was not specifically targeted. Thus there remains
a significant portion of model–observational data dif-
ference that may be considered “irreducible” without
fundamental improvements in the parameterizations of
subgrid-scale processes (McWilliams 2007). These er-
rors do not necessarily imply that climate models pro-
vide poor predictions of forced change if the errors do
not affect the balance of processes that control the
strength or structure of the forced response and feed-
back patterns. However, it has been always been diffi-
cult to know how significant existing systematic errors
are to affecting the prediction problem. For at least the
global scales, the result of constraining parametric un-
certainties with observations suggests that current gen-
eration climate models may result in more convergent
measures of sensitivity to CO2 forcing. Such a conver-
gence, however, would not necessarily imply that model
predictions are correct, especially without agreement of
change at regional scales. The apparent convergence
we found may be an artifact of undersampling sources
of uncertainty that were not included in the present

analysis or the limited number of convergence chains
considered.

Although the convergence in Fig. 4 seems to contra-
dict results of parametric uncertainty studies with the
Hadley Centre Atmospheric Model version 3
(HadAM3; Stainforth et al. 2005), which shows the pos-
sibility for wide ranges in sensitivity between 1.5° and
11°C, both CAM3.1 and HadAM3 show that the model
configurations with the smallest systematic errors have
sensitivities within a half a degree of 3°C. The most
improved models in both cases occur with a similar
10% reduction in skill score values. The limited sam-
pling of the CAM3.1 is not meant to be representative
of the range of uncertainties admitted by observational
and structural uncertainties. However, the difference in
extreme sensitivities reflected in these two parametric
uncertainty studies illustrates the importance of the
subjectively determined skill score in determining
whether a given nonoptimal configuration is deemed
acceptable. For instance, according to the analysis of
Knutti et al. (2006), HadAM3 configurations with the
highest sensitivities also have unrealistically large sea-
sonal cycles, a feature that was missed by the choice to
focus model evaluations on annual mean quantities.
Another difference in skill score definitions that may be
significant is our choice to include a constraint on the
global radiative balance at the top of the atmosphere.
Other groups have chosen to not impose this constraint
because they felt it would be too limiting of the possible
plausible configurations (Annan and Hargreaves 2004;
Murphy et al. 2007). We also find that the global radia-
tive balance is extremely sensitive to the selected pa-
rameter choices, yet the range in plausible parameter
choices remains broad. We note that many climate
models are tuned to have a global radiative balance, but
yet still have large differences in their measure of sen-
sitivity to CO2 forcing. Although this constraint limits
the parameter combinations that we would deem plau-
sible, we do not suspect that this one constraint is solely
responsible for the shift and narrow range in sensitivi-
ties among the optimized configurations of CAM3.1.
The fact that these sensitivities were within a degree of
optimized versions of the HadAM3 model sensitivity
despite the many differences in the models’ designs and
the ways the models are compared to observations may
suggest that this apparent approach to convergence is a
robust result. Testing the level of convergence among
other similarly optimized models would provide further
support for the generality of this inference.
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