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Abstract

The problem of model mixing in time series, for which the interest lies in the estimation

of stochastic volatility, is addressed using the approach known as Mixture-of-Experts (ME).

Specifically, this work proposes a ME model where the experts are defined through ARCH,

GARCH and EGARCH structures. Estimates of the predictive distribution of volatilities

are obtained using a full Bayesian approach. The methodology is illustrated with an analy-

sis of a section of US dollar/German mark exchange rates and a study of the Mexican stock

market (IPC) index using the Dow Jones Industrial (DJI) index as a covariate.
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1 Introduction

In options trading and in foreign exchange rate markets, the estimation of volatility plays

an important role in monitoring radical changes over time of key financial indexes. From

a statistical standpoint, volatility refers to the variance of the underlying asset or re-

turn,conditional to all the previous information available until a specific time point.

It is well known that the volatility of a financial series tends to change over time and

there are different types of models to estimate it: continuous-time or discrete-time pro-

cesses. This paper discusses a model that falls in the second category. Discrete-time models

are divided into those for which the volatility is ruled by a deterministic equation and those

where the volatility has a stochastic behavior. Among the former, we have the autoregres-

sive conditional heteroscedastic (ARCH) model introduced by Engle (1982) which provided

a breakthrough in the modeling and estimation of time-varying conditional variance. Ex-

tensions to this seminal model are the generalized ARCH (GARCH) of Bollerslev (1986),

the exponential GARCH (EGARCH) of Nelson (1991), the Integrated GARCH (IGARCH)

and the GARCH in mean (GARCH-M). Additionally, models like the stochastic volatility

(SV) of Melino and Turnbull (1990) give a discrete-time approximation for a continuous

diffusion processes used in option pricing.

These variety of models gives a portfolio of options to represent volatility, but no agree-

ment to decide which is the best approach. Given this difficulty, a new source of modeling

arised: mixture-of-models. Since the only agreement seems to be that no real process can

be completely explained by one model, the idea of model mixing, to combine different ap-

proaches into a unique representation, is very interesting. There are many types of methods

of mixture models to estimate volatility. For instance, Wong and Li (2001) proposed a mix-

ture of autoregressive conditional heteroscedastic models with an autoregressive component

to model the mean (MAR-ARCH) and for which they use the EM algorithm to produce

point estimation of the volatility. Another approach is given by Tsay (2002), who con-

sidered a mixture of ARCH and GARCH models by Markov Switching. Vrontos et. al.

(2000) used reversible jump Markov chain Monte Carlo (MCMC) methods to predict a fu-

ture volatility via model averaging of GARCH and EGARCH models. Both of these papers

only considered a mixture of two models. Furthermore, Huerta et al.(2003) discussed the

neural networks approach known as Hierarchical Mixture-of-Experts (HME) which is a very

general and flexible approach of model mixing since it incorporates additional exogenous

information, in the form of covariates or simply time, through the weights of the mixture.

The example shown in that paper makes comparisons between a difference-stationary and a

trend-stationary model using time as the only covariate. Additionally, Huerta et al.(2001),

considers an HME model including AR, ARCH and EGARCH models and obtained point

estimates of volatility using the EM algorithm. However, that paper does not report interval
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estimates via a full Bayesian approach.

In this paper, we use Mixture-of-Experts (ME), which is a particular case of HME,

to build a mixture of ARCH, GARCH and EGARCH models. Through a full Bayesian

approach based on MCMC methods, we show how to estimate the posterior distribution

of the parameters and the posterior predictive distribution of the volatility which is a very

complicated function of the mixture representation. Additionally, we show how to obtain

point estimates of the volatility, but also the usually unavailable forecast intervals. The

paper proceeds in the following way. In section 2, we offer an introduction to ME and HME

in the context of time series modeling. In section 3, we give the details of our volatility

Mixture-of-Experts model along with the MCMC specifications to implement a full Bayesian

approach to the problem of estimating volatility. Section 4 illustrates our methodology

in the context of two financial applications and Section 5 provides some conclusions and

extensions.

2 Mixture Modeling

Hierarchical Mixture of Experts (HME) was first introduced in the seminal paper by Jordan

and Jacobs (1994) and it is based on mixing models to construct a neural network the using

logistic distribution. This approach allows for model comparisons and a representation of

the mixture weights as a function of time or other covariates. Additionally, the elements

of the mixture, also known as experts, are not restricted to a particular parametric family

which allows for very general model comparisons.

The model considers a response time series {yt} and a time series of covariates or

exogenous variables {xt}. Let ft(yt|Ft−1,χ;θ) be the probability density function (pdf) of

yt conditional on θ, a vector of parameters, χ the σ-algebra generated by the exogenous

information {xt}
n
0 , and for each t, Ft−1 is the σ-algebra generated by {ys}

t−1
0 , the previous

history about the response variable up to time t − 1. Usually, it is assumed that this

conditional pdf only depends on χ through xt.

In the methodology of HME the pdf ft is assumed to be a mixture of conditional pdfs

of simpler models (Peng et. al., 1996). In the context of time series, the mixture could be

represented by a finite sum

ft(yt|Ft−1, χ; θ) =
∑

J

gt(J |Ft−1, χ; γ)πt(yt|Ft−1, χ, J ; η),

where the functions gt(·|·,·;γ) are the mixtures weights; πt(·|·,·,J ;η) are the pdfs of simpler

models defined by the label J ; γ and η are sub-vectors of the parameter vector θ.

The models that are being mixed in HME are commonly denoted as experts. For

example, in time series, one expert could be an AR(1) model, another expert could be

3



a GARCH(2,2) model. Also, the experts could be models that belong to the same class but

with different orders or number of parameters. For example, all the experts are AR model

but with different orders and different values of the lag coefficients. The extra hierarchy

in HME partitions the space of covariates into O “overlays”. In each overlay we have M

competing models so that the most appropriate model will be assigned a higher weight.

For this hierarchical mixture, the expert index J, could be expressed as J = (o,m),

where the overlay index o takes a value in the set {1,. . .,O} and the model type index m

takes a value in {1,. . .,M}. The mixture model can be rewritten as

ft(yt|Ft−1, χ; θ) =
O

∑

o=1

M
∑

m=1

gt(o,m|Ft−1, χ; γ)πt(yt|Ft−1, χ, o,m; η).

Within the neural network terminology, the mixture weights are known as gating func-

tions. In difference to other approaches these weights have a particular parametric form

that may depend on the previous history, exogenous information or exclusively on time.

This makes the weights evolve across time in a very flexible way.

Specifically, it is proposed that the mixture weights have the form,

gt(o,m|Ft−1, χ; γ) =

{

evo+uT
o Wt

∑O
s=1 evs+uT

s Wt

}{

e
vm|o+uT

m|o
Wt

∑M
l=1 e

vl|o+uT
l|o

Wt

}

where the v’s and u’s are parameters which are components of γ; Wt is an input at

time t, which is measurable with respect to the σ-algebra induced by Ft−1 ∪ χ. In this

case, γ includes the following components: v1,u1,. . .,vO−1,uO−1,v1|1,u1|1,. . .,vM−1|1,uM−1|1,

. . . ,vM−1|O,uM−1|O. For identifiability of the mixture weights , we set vO = uO = vM |o =

uM |o = 0 for all o = 1,. . .,O. This restriction guarantees that the gating functions are

uniquely identified by γ as shown in Huerta et al.(2003). Both terms that define the mix-

ture weights follow a multinomial logistic pdf where the first term describes the probability

of a given overlay and the second term, the probability of a model within overlay. Each

of these probabilities being a function of the input Wt. Mixtures of time series models

for estimating volatility has also been considered in Wong and Li (2001). However, these

authors only look at the problem from a point estimation perspective.

Inferences on the parameter vector θ can be based in the log-likelihood function

Ln(·) =
1

n

n
∑

t=1

logft(yt|Ft−1, χ; ·).

To obtain the maximum likelihood estimator of θ, θ̂ = arg maxLn(·), it is possible to use

the Expectation Maximization or EM algorithm as described in Huerta et al.(2003). A

general presentation of the EM algorithm appears in Tanner (1996).
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After the MLE, θ̂, is obtained, the interest focuses in the evaluation of the weights

assigned to each of the M models as a function of time t. Primarily, there are two ways to

achieve this, the first one is via the conditional probability of each model m defined by

Pt(m|yt,Ft−1, χ, θ) ≡ hm(t) ≡
O

∑

o=1

hom(t; θ).

where conditional refers to the actual observation at time t, yt.

The second approach is to consider the unconditional probability at time t given by

Pt(m|Ft−1, χ, θ) ≡ gm(t) ≡

O
∑

o=1

gom(t; θ).

Point estimation of each probability can be obtained by evaluation at θ̂ or by computing

the expected value with respect to the posterior distribution π(θ|Fn, χ).

The particular case of HME that we consider in this paper is O = 1 which is known

as Mixture of Experts (ME). In the ME modeling it is assumed that the process that

generates the response variable can be decomposed into a set of subprocesses defined over

specific regions of the space of covariates. For each value of the covariate xt, a ‘label’ r is

chosen with probability gt(r|χ,Ft−1,γ). Given this value of r, the response yt is generated

from the conditional pdf πt(yt|r, χ,Ft−1,η). The pdf of yt conditional on the parameters,

the covariate and the response history is given by

f(yt|χ,Ft−1, θ) =
M
∑

r=1

gt(r|χ,Ft−1, γ)πt(yt|r, χ,Ft−1, η).

and the likelihood function is

L(θ|χ) =
n

∏

t=1

M
∑

r=1

gt(r|χ,Ft−1, γ)πt(yt|r, χ,Ft−1, η).

As with HME, the mixture probabilities associated to each value of r are defined through

a logistic function

gt(r|χ,Ft−1, η) ≡ g(t)
r =

eξr

∑M
h=1 eξh

,

where ξr = vr + uT
r Wt, Wt is an input that could be a function of time, history and {xt}.

For identifiability, ξM is set equal to zero.

Inference about the parameters in the ME is simplified by augmenting the data with

non-observable indicator variables which determine the type of model expert. For each time

t , z
(t)
r is a binary variable such that z

(t)
r = 1 with probability

h(t)
r =

g
(t)
r πt(yt|r, χ,Ft−1, η)

∑M
r=1 g

(t)
r πt(yt|r, χ,Ft−1, η)

.
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If χ’= {(xt, z
(t))}n

t=1, where z(t) is the vector that includes all the indicator variables, the

augmented likelihood for the ME model is

L(θ|χ′) =

n
∏

t=1

M
∏

r=1

{g(t)
r πt(yt|r, χ,Ft−1, γ)}z

(t)
r .

In the following section, we discuss how to estimate a ME model by a Bayesian approach

and with the experts being ARCH, GARCH and EGARCH models. We picked these ex-

perts as our model building blocks since these are the main conditional heteroscedasticity

models used in practice as pointed out by the seminal papers of Engle (1982), Engle (1995),

Bollerslev (1986) and Nelson (1991). Also, Tsay (2002) and Vrontos, e. al. (2002) mention

that these models are interesting in practice due to their parsimony.

3 Bayesian Inference on ME for Volatility

If the Bayesian paradigm is adopted, the inferences about θ are based on the posterior

distribution π(θ|y). Bayes Theorem establishes that

π(θ|y) =
f(y|θ)π(θ)

∫

Θ f(y|θ)dF π(θ)

which defines the way to obtain the posterior distribution of θ through the prior π(θ) and the

likelihood function f(y|θ). However, for a ME or HME approach the marginal distribution

of y,
∫

Θ f(y|θ)dF π(θ) cannot be obtained analytically. We overcome this difficulty by using

MCMC methods to simulate samples from π(θ|y). For more details about MCMC methods

see Tanner (1996).

First, we assume that the prior distribution for θ = (η,γ) has the form

π(θ) = π(η)π(γ),

so the expert parameter η and the weights or gating parameters γ are apriori independent.

We define Z = {z(t); t = 1,. . .,n} and for each t, z(t) = {z
(t)
r ; r = 1,. . .,M} is the set of

indicator variables at t. Conditional on θ, P (z(t)|θ,χ) is a Multinomial distribution with

total count equal to 1 and cell probabilities gr(t,γ).

Our MCMC scheme is based on the fact that it is easier to obtain samples from the

augmented posterior distribution π(θ,Z|Fn,χ), instead of directly simulating values from

π(θ|Fn,χ). This data augmentation principle was introduced by Tanner and Wong (1987).

The MCMC scheme follows a Gibbs sampling format for which we iteratively simulate from

the conditional distributions π(θ|Z,Fn, χ) and π(Z|θ,Fn,χ).

The conditional posterior π(Z|θ,Fn,χ) is sampled through the marginal conditional pos-

teriors π(z(t)|θ,Fn,χ) defined for each value of t. Given θ, Fn and χ, it can be shown that
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the vector z(t) has a Multinomial distribution with total count equal to 1 and for which

P (z(t)
r = 1|θ,Fn, χ) = hr(t; θ) =

g
(t)
r πt(yt|r,Ft−1, χ; η)

∑M
r=1 g

(t)
r πt(yt|r,Ft−1, χ; η)

.

The vector θ = (η,γ) is sampled in two stages. Firstly, η is simulated from the con-

ditional posterior distribution π(η|γ,Z,Fn,χ) and then γ is sampled from the conditional

posterior π(γ|η,Z,Fn,χ). By Bayes Theorem,

π(η|γ,Z,Fn, χ) ∝

n
∏

t=1

M
∏

r=1

ft(yt|Ft−1, χ, r; η)z
(t)
r π(η).

Analogously,

π(γ|η,Z,Fn, χ) ∝

n
∏

t=1

M
∏

r=1

gt(r|Ft−1, χ; γ)z
(t)
r π(γ).

If η can be decomposed into a sub-collection of parameters ηr that are assumed apriori

independent, the simulation for the full conditional for η is reduced to individual simulation

of each ηr. If ηr is assigned a conjugate prior with respect to the pdf of the “r” expert, the

simulation of η is straightforward. For γ, it is necessary to implement Metropolis-Hastings

steps to obtain a sample from its full conditional distribution.

The specific details for the MCMC implementation depends on the type of expert models

and prior distributions on model parameters. For example, Huerta et al.(2003) discussed a

HME model with a full Bayesian approach where the experts are a ‘difference-stationary’

and a ‘trend-stationary’ model. The priors used on the parameters of their HME model

were non-informative. Here, we consider the case of experts that allow volatility modeling.

It is well known that the volatility of a financial time series can be represented by ARCH,

GARCH and EGARCH models. The properties of these models make them attractive to

obtain forecasts in financial applications. We propose a ME that combines the models

AR(1)-ARCH(2), AR(1)-GARCH(1,1) and AR(1)-EGARCH(1,1). Although the order of

the autoregressions for the observations and volatility is low for these models, in practice it

is usually not necessary to consider higher order models.

The elements of our ME model are, the time series of returns {yt}
n
1 , the series of covari-

ates {xt}
n
1 , which in one of our applications presented in the next section it is simply time

and in the other, it is the Dow Jones index. In any case, ξr = vr + uT
r Wt, where Wt is an

input that depends on the covariates.

Our expert models will be parameterized in the following way,

AR(1)-ARCH(2)

yt = φ1yt−1 + ε1,t ε1,t ∼ N(0, σ2
1,t)

σ2
1,t = ω1 + α11ε

2
1,t−1 + α12ε

2
1,t−2
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AR(1)-GARCH(1,1)

yt = φ2yt−1 + ε2,t ε2,t ∼ N(0, σ2
2,t)

σ2
2,t = ω2 + α21ε

2
2,t−1 + α22σ

2
2,t−2

AR(1)-EGARCH(1,1)

yt = φ3yt−1 + ε3,t ε3,t ∼ N(0, σ2
3,t)

ln(σ2
3,t) = ω3 + α31ln(σ2

3,t−1) + α32ε3,t−1 + α33(|ε3,t−1| − E(|ε3,t−1|))

For each expert m = 1, 2, 3, the ME will be represented by the following pdfs and gating

functions,

Expert 1

gt(1|Ft−1, χ; γ) = exp{ξ1}
P3

r=1 exp{ξr}
= exp{v1+u1Wt}

P3
r=1 exp{vr+urWt}

πt(yt|1,Ft−1, χ; η1) = 1
q

2πσ2
1,t

exp{− 1
2σ2

1,t

(yt − φ1yt−1)
2}

Expert 2

gt(2|Ft−1, χ; γ) = exp{ξ2}
P3

r=1 exp{ξr}
= exp{v2+u2Wt}

P3
r=1 exp{vr+urWt}

πt(yt|2,Ft−1, χ; η2) = 1
q

2πσ2
2,t

exp{− 1
2σ2

2,t

(yt − φ2yt−1)
2}

Expert 3

gt(3|Ft−1, χ; γ) = exp{ξ3}
P3

r=1 exp{ξr}
= 1

P3
r=1 exp{vr+urWt}

πt(yt|3,Ft−1, χ; η3) = 1
q

2πσ2
3,t

exp{− 1
2σ2

3,t

(yt − φ3yt−1)
2}

As mentioned before, the vector θ = (η,γ) can be decomposed into two subsets, one

that includes the expert parameters, η = (α11,α12,α21,α22,α31,α32,α33,ω1,ω2,ω3,φ1,φ2,φ3)

and another subvector that includes the gating function parameters, γ = (u1,u2,v1,v2).

The likelihood function of the model is expressed as,

L(θ|χ) =

n
∏

t=1

3
∑

r=1

g(t)
r exp{−

1

2σ2
r,t

(yt − φryt−1)
2},

and the augmented likelihood function is,

L(θ|χ′) =

n
∏

t=1

3
∏

r=1

{

g(t)
r exp{−

1

2σ2
r,t

(yt − φryt−1)
2}

}z
(t)
r

.
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The MCMC scheme to obtain posterior samples for this ME is based on the principle

of “divide and conquer”. For Expert 1, we assume that η1 = (φ1,ω1,α11,α12) has prior

distribution with components that are apriori independent,π(η1) = π(φ1)π(ω1)π(α11)π(α12)

where φ1 ∼ N(0,0.1), ω1 ∼ U(0,∞), α11 ∼ U(0,1) and α12 ∼ U(0,1).

For the Expert 2, η2 = (φ2,ω2,α21,α22) also has components that are apriori independent

where, φ2 ∼ N(0,0.1), ω2 ∼ U(0,∞), α21 ∼ U(0,1) and α22 ∼ U(0,1).

In an analogous way, for Expert 3 the vector η3 = (φ3,ω3,α31,α32,α33) has independent

components with marginal prior distributions given by φ3 ∼ N(0,0.1), ω3 ∼ N(0,10), α31 ∼

U(−1,1), α32 ∼ N(0,10) and α33 ∼ N(0,10).

Finally, each of the entries of the vector of parameters appearing in the mixture weights,

γ = (u1,u2,v1,v2), is assumed to have a U(−l, l) prior distribution with a large value for l.

This prior specification was chosen to reflect vague (flat) prior information and to facilitate

the calculations of the different steps inside our MCMC scheme. The N(0,0.1) prior on

the AR(1) coefficients was proposed with the idea of containing most of its mass in the

region defined by the stationarity condition. Instead of a N(0,0.1) prior, we also used a

U(−1, 1) prior on the coefficients and the results obtained were essentially the same as

with the Normal prior. In fact, the non-informative priors were suggested by Vrontos, et

al.(2000) in the context of parameter estimation, model selection and volatility prediction.

Also, these authors show that under these priors and for pure GARCH/EGARCH models,

the difference between classical and Bayesian point estimation is minimal. The restrictions

on these priors in the different parameter spaces is to satisfy the stationarity conditions of

the expert models. For our ME model, these type of non-informative priors were key to

produce good MCMC convergence results which could not be obtain with other classes of

(informative) priors. Since the parameters of ARCH/GARCH/EGARCH models are not

very meaningful in practice, the most typical prior specification for these parameters is to

adopt non-informative prior distributions. To our knowledge, there is no study on the effects

of using informative priors in this context. Furthermore, Villagran (2003) discuses another

aspect of our prior specification in terms of simulated data. If the true data follows an

AR(1)-GARCH(1,1) structure, the non-informative prior allows to estimate the parameters

of true model with a maximum absolute error of 0.003. The maximum posterior standard

deviation for all the model parameters is 0.0202 and the posterior mean for g
(t)
t is practically

equal one for the true model (in this case GARCH) and for all time t.

Our MCMC algorithm can be summarized as follows:

• Assign initial values for θ and with these values calculate the volatilities for each

expert, σ
2(0)
1,t , σ

2(0)
2,t and σ

2(0)
3,t for all t.

• Evaluate the probabilities g
(t)
r at γ(0) and compute the conditional probabilities h

(t)
r

for all t.
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• Generate z
(t)
r conditional on θ, Fn, χ from a Multinomial distribution with total

count equal to 1 and cell probabilities h
(t)
r . Across this step, we are generating vectors

(z
(t)
1 ,z

(t)
2 ,z

(t)
3 ) for all values of t.

• For the augmented posterior distribution, we generate each of the expert parameters

and each of the mixture weights or gating function parameters via Metropolis-Hastings

(M-H) steps. A general description of the M-H algorithm with several illustrative

examples appears in Tanner (1996).

• At each M-H step, we propose a new value θ(j) for the parameters from a candidate

distribution and than accept or reject this new value with probability α(θ (j−1),θ(j)) =

min
[π(θ(j)|·)q(θ(j−1))

π(θ(j−1)|·)q(θ(j))
,1

]

.

• After generating all the model parameters at iteration j, we update the volatilities

σ
2(j)
1,t , σ

2(j)
2,t and σ

2(j)
3,t , the probabilities g

(t)
r , h

(t)
r and the indicator variables Z(j).

• The algorithm is iterated until Markov Chain convergence is reached. An initial

section of the iterations is considered a burn-in period and the remaining iterations

are kept as posterior samples of the parameters.

Given that mixture models are highly multimodal, to improve on the convergence of

our MCMC method, it is convenient to propose several starting points for θ and run the

algorithm for a few iterations. The value that produces the maximum posterior density is

used as the initial point θ(0) to produce longer runs of the Markov chain. In the applications

that are presented in the next section, we used 20 overdispersed starting values for θ and

calibrated our proposal distribution so that the acceptance rates of all the M-H steps were

around 45%. We mantained this acceptance rates relatively low to allow full exploration of

the parameter space and to avoid getting stuck around a local mode.

For a specific MCMC iteration, the volatility or conditional variance of our ME model

is computed as

V
(j)
t =

3
∑

r=1

g
(j)
r,t σ

2(j)
r,t +

3
∑

r=1

g
(j)
r,t (µ

(j)
r,t − µ

(j)
t )2,

µ
(j)
t =

3
∑

r=1

g
(j)
r,t µ

(j)
r,t =

3
∑

r=1

g
(j)
r,t φ(j)

r yt−1.

where the index t represents time, the index j represents iteration and µr,t represent the

mean of expert r at time t. These expressions follow from well known results to compute the

variance of a mixture distribution with 3 components. Given a value of model parameters

at iteration j, V
(j)
t can be directly evaluated from these equations. The expression for the
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volatility of our ME model is formed by two terms. The first term represents the dependency

of the conditional variance with respect to past volatilities and the second term, represents

changes in volatility of the mixture model due to the differences in conditional mean between

experts.

In the next section, we show that using time as a covariate allows one to detect struc-

tural changes in volatility so ME is able to determine if the process generating the data

corresponds to a unique expert.

4 Applications

4.1 Exchange rates US dollar/German Mark

2 Figure 1 (a) shows 500 daily observations between the American dollar and the German

mark starting on October of 1986 and Figure 1 (b) shows the corresponding returns of these

exchange rates.

Figure 1 about here.

Using the returns as our response time series, we implemented the ME model with time

being our covariate. Figure 2 shows posterior means and 95 % credible intervals for the

unconditional probabilities of each expert, i.e., g
(t)
r ; r = 1, 2, 3. Both h

(t)
r and g

(t)
r are func-

tions of the unknown parameter vector θ, so it makes absolute sense to assess measures of

uncertainty to these probabilities.

Figure 2 about here.

We can appreciate that the expert that dominates in terms of probability is the AR(1)-

GARCH(1,1) model. Furthermore, Figure 2 also shows the relative uncertainty of the

different experts across time. For the period covering October 86 to January 87, there is a

significant weight associated to the AR(1)-EGARCH(1,1) model and the credible band for

the weight of this model can go as high as 0.8 and as low as 0.2. In Figure 3 we report

posterior means of the conditional probabilities of each model, h
(t)
r ; r = 1, 2, 3.

Figure 3 about here.

This figure shows a similar pattern compared to the description of probabilities given

2The code to fit the models used for this section is available under request from avhstat@unm.edu. Also,

this code can be downloaded from http://www.stat.unm.edu/∼avhstat
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by Figure 2. Since these are conditional probabilities, individual observations may produce

high fluctuations in probability. However, this figure confirms that the models that dominate

in the ME, at least in the initial time periods, are the AR(1)-GARCH(1,1) and the AR(1)-

EGARCH(1,1). Towards the end of the considered time periods, the dominant model is the

AR(1)-GARCH(1,1) but the AR(1)-ARCH(2) model has a significant weight of 0.4.

In Figure 4 we present posterior mean estimators of the volatility for the ME model and

for the individual expert models.

Figure 4 about here.

The ME model has a higher volatility estimate at the beginning of the time series. This

is due to the influence of the EGARCH models in the first part of the series as shown by

Figures 2 and 3. A referee and the editors suggested that we compared the square of the

residuals of a pure AR(1) model fitted to the return series, with the volatilities presented in

Figure 4. These residuals seem to be better charaterized by the AR(1)-ARCH(2) volatilities

towards the end of the time period covered by the data. However at the beginning, the

residuals are more closely followed by the AR(1)-EGARCH(1,1) volatilities. Additionally,

we think that the ME is at least as good as any individual expert model since it is pooling

information from different models. A great advantage of the ME model is that it shows, as a

function of time t, how different expert models are competing with each other conditional on

the information at t−1 and how the volatilities change according to time. Notice that from

January 1987, the volatilities of the AR(1)-ARCH(2) are consistent with the volatilities of

the ME model.

Figure 5 considers a “future” period starting from March 1988 and that covers 100 daily

exchange rate values.

Figure 5 about here.

Figure 5 (a) shows the time series of returns for this future period and Figure 5 (b)

shows the one-step-ahead predictive posterior means and the 95 % one-step-ahead forecast

intervals for volatility based on the ME model that only uses previous data from October

86 to March 88 and with a forecasting horizon of 100 time steps. This Figure illustrates

one of the main features of our model. The MCMC approach allows us to compute samples

of future or past volatilities values that can be summarized in terms of predictive means

and credible intervals. In our ME model, the volatility is a very complicated function of

the parameters and producing non-Monte Carlo estimates, especially predictive intervals,

is practically impossible.
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4.2 Analysis of the Mexican stock Market

In this application, we studied the behavior of the Mexican stock market (IPC) index using

as covariates the Dow Jones Industrial (DJI) index from January 2000 to September 2004

and also using time. Figure 6 shows both the IPC index and the DJI index time series with

their corresponding returns.

Figure 6 about here.

It is obvious that the IPC index and the DJI index have the same overall pattern over

time. In fact, some Mexican financial analysts accept that the IPC index responds to every

‘strong’ movement of the DJI index. Our Bayesian ME approach adds some support to this

theory.

Figure 7 about here.

In Figure 7 we show the posterior distributions of the parameters for the mixture weights

or gating functions when Wt was set equal to the DJI index. The posterior distribution

for the ‘slope’ parameters u1 and u2 have most of their posterior mass away from 0, which

means that the effect of the covariate in our ME analysis is ‘highly significant’.

In Figure 8 we show the mixture weights of the ME using different covariates.

Figure 8 about here.

The left column presents the posterior mean estimates of gr(t); r = 1, 2, 3 using the

DJI index as covariate and right column shows the estimates as a function of time. The

right column shows a shift on the regime since the AR(1)-EGARCH(1,1) expert rules the

evolution of the volatility of the IPC index from January 2000 to March 2002. After this

date, the AR(1)-ARCH(2) model is the one with higher probability. As a function of the

DJI index, the mixture weights behavior is quite different. Now the AR(1)-EGARCH(1,1)

expert rules all the time in comparison to the other experts. This is a result due to the

common high volatility shared by the IPC index and the DJI index.

5 Conclusions and Extensions

In this paper we present a mixture modeling approach based on the Bayesian paradigm and

with the goal of estimating stochastic volatility. We illustrate the differences of our mixture

methodology versus a sole model approach in the context of ARCH/GARCH/EGARCH
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models for two different financial series. The two main aspects of our ME model are: (1) the

comparison of different volatility models as a function of covariates and (2) the estimation

of predictive volatilities with their corresponding measure of uncertainty given by a credible

interval. On the other hand, we had only considered ME and not HME. The difficulty with

HME is that it requires the estimation of the number of overlays O which poses challenging

computational problems in the form of reversible jump MCMC methods. Additionally, we

had not considered any other experts beyond ARCH, GARCH and EGARCH models. An

extension to our approach considers other competitors or experts like the stochastic volatility

models of Jacquier, et al.(1994). This leads into MCMC algorithms combining mixture

modeling approaches with Forward Filtering Backward simulation. These extensions are

part of future research.
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Figure 1: (a) Exchange rates between U.S. dollar and German Mark starting from October

1986. (b) Returns of the exchange rates.
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Figure 3: Exchange rates example. Posterior means of h
(t)
r ; r = 1, 2, 3
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Figure 6: (a) The Mexican stock market (IPC) index from January 2000 to September 2004.

(b) Time series of returns for the IPC index. (c) The Dow Jones Index from January 2000

to September 2004. (d) Time series of returns for the Dow Jones Index.
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Figure 8: Left column. Probabilities of each expert as a function of the returns of the DJI.

Right column. Probabilities of each expert as a function of time.
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