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10.1 Introduction

Figure 10.1 shows the monthly maxima of precipitation near the Maíquetia-Simon Bolivar air-
port near Caracas, Venezuela within the period 1960–1999. The data only considers measure-

ments at one site and has critical importance in extreme value analysis due to the catastrophic events
that occur near this area at the end of the year 1999. For example [5] looked carefully at a Bayesian
analysis of the annual maxima rainfall values at the same site, based on models that fully account
for parameter uncertainties and non-stationarity. Also [16], analysed the monthly rainfall maxima
via dynamic regressions as in [29], [28] and in connection with a climatological index known as the
North Atlantic Oscillation (NAO). Here we consider these rainfall observations as a starting point
to study extreme events via the Generalized Extreme Value (GEV) distribution. Two key questions
that arise from Figure 10.1 are: (1) How do we characterize these rainfall events? and (2) How do we
assess for the non-stationary behaviour that is shown in the data?

10.1.1 GEV distribution and likelihood

Let ym,1, ym,2, . . . , ym,n be samples of extremes from m independent observations (i.e. block max-
ima), where m is the number of observations in each block and n is the number of blocks. For the
precipitation maxima of Figure 10.1, a uniform block size across time was considered to produce the
observations. In applications of block-maxima values it is typical to assume that ym,i, i = 1, 2, . . . , n,
are independent and arise from a common GEV distribution as in [4] and [1]. If y ∼ GEV(μ, σ , ξ),
the cumulative distribution function for y is:

H(y) = exp

{
−

[
1 + ξ

(
y − μ

σ

)]−1/ξ

+

}
(10.1)

where −∞ < μ < ∞ is a location parameter, σ > 0 is a scale parameter and −∞ < ξ < ∞ is
a shape parameter. The + sign denotes the positive part of the argument so the support for H(y)
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Figure 10.1 Monthly maxima of precipitation in Venezuela.

is given by the set {y : 1 + ξ(
y−μ
σ ) > 0}. It is well known that different values of ξ imply different

tail behaviours or domains of attraction for H(y), namely Gumbel (ξ → 0), Fréchet (ξ > 0) and
Weibull (ξ < 0). H(y) arises through a limiting argument for block maxima in the Extremal Type
or Fisher-Tippet theorem as in [10] and also presented in [4] and [1], so if the block size is large
enough, one may assume that the observations ym,i follow a GEV distribution. In particular, if we
drop the dependence on the block size so that yi = ym,i, the log-likelihood function based on n
observations is

l(μ, σ , ξ |{yt}n
t=1) = −n log σ − (1 + 1/ξ)

n∑
i=1

log{1 + ξ(yi − μ)/σ }

−
n∑

i=1
{1 + ξ(yi − μ)/σ }−1/ξ . (10.2)

10.1.2 Bayesian inference on the GEV

From a Bayesian point-of-view inferences on (μ, σ , ξ) can be directly obtained with Markov chain
Monte Carlo (MCMC) methods based on a Gibbs sampling approach as in [13] with embedded
Metropolis–Hastings (M-H) steps as in [15]. For instance, a prior distribution p(μ, σ , ξ) can be
induced through a trivariate normal distribution on (μ, log(σ ), ξ) which includes the case of an
independence prior.

As described in [6], beta distributions for probability ratios or gamma distributions for quantile
difference could alternatively be used to elicit p(μ, σ , ξ). In particular, the quantile-difference priors
are interesting since the 1 − p quantile of a GEV distribution has a closed form in terms of the three
parameters, zp = μ − σ

ξ [1 − {−log(1 − p)}−ξ ].
The posterior distribution for α can be sampled with random walk proposals on each of the

parameters as presented in [4] and [1],
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Figure 10.2 Marginal posterior distribution for (μ, σ , ξ) and 95% quantile of the GEV distribution.

log(σ∗) = log(σ (i)) + νσ ε1 (10.3)

μ∗ = μ(i) + νμε2 (10.4)

ξ∗ = ξ(i) + νξ ε3 (10.5)

where εj ∼ N(0, 1); j = 1, 2, 3 and νσ , νμ, νξ denote the proposal tuning parameters. The pro-
posed values are then accepted or rejected as iterations of the MCMC are performed. To illustrate
this method, Figure 10.2 shows histograms of posterior samples for μ, σ , ξ and z0.05 corresponding
to the data of Figure 10.1 and via this hybrid Gibbs sampling/Metropolis–Hastings method.

It is interesting to note that quantile estimation can also be achieved through the predictive
distribution,

p(yf |y) =
∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

f (yf |μ, σ , ξ)p(μ, σ , ξ |y)dμdσdξ (10.6)

where yf denotes a future observation. Here f (yf |μ, σ , ξ) represents the probability density func-
tion for this future observation based on the GEV distribution. Through the Method of Composition
it is possible to obtain samples of yf from the predictive distribution. An empirical quantile based
on these samples approximates the value y∗ such that P[Y f ≤ y∗|y] = 1 − p, which fully takes into
account all of the model parametric uncertainties. In fact, for the maximum monthly rainfall data
of Figure 10.1, the 99% quantile based on the predictive distribution (p = 0.01) is 162.87. On the
other hand, if the GEV distribution is fitted with Maximum Likelihood Estimation (MLE), the 99%
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quantile is estimated as 152.3. Furthermore, the posterior mean of the GEV distribution quantile,
z0.01, is 157.35.

Bayesian approaches for extreme values had been extensively studied from the beginning of
Bayesian computation with MCMC and other numerical approximations. The paper by [25] is
one of the first to illustrate the Bayesian modelling of extremes within the GEV framework. Also
[7] offers some developments of Bayesian approaches to extreme value theory with applications
to modelling areal rainfall extremes. A thorough review of the topic is offered by [6] where the
authors studied the Bayesian approach from a variety of aspects, including how priors can be
better elicited for extreme value data and how well a complete Bayesian analysis, that includes
predictive-quantile estimation, performs compared to a pure likelihood based analysis as briefly
illustrated here with the rainfall data at the Maíquetia/Simon Bolivar airport. The R-package evd-
bayes described in [26] and [27] implements the techniques in [6] including quantile-based prior
specifications and peaks-over-threshold analysis. However, the modelling described in these refer-
ences is mainly restricted to constant parameters or to parameters that may have deterministic trends
in time.

10.2 Time-varying models for the GEV distribution

10.2.1 Introduction

To account for the type of non-stationarities that are present in the data of Figure 10.1, we can impose
a time-dependent structure on any set of parameters of the GEV distribution. Here, we emphasize
on a GEV distribution with a time-varying location parameter,

H(yt) = exp

{
−

[
1 + ξ

(
yt − μt

σ

)]−1/ξ

+

}
, t = 1, 2, . . . n (10.7)

If a deterministic function is chosen to model time changes in μt , this can be expressed in a gener-
alized form as

μt = g(XTβ) (10.8)

where g is a specific link function, β is a vector of parameters and XT is a vector of covariates that
involves time. In particular μt can follow a linear trend, μt = β0 + β1t, a higher degree polynomial
such as μt = β0 + β1t + β2t2 or a trend/seasonal model, μt = β0 + β1t + β2S(t), where S(t)
represents the seasonal component. For example, [4] discusses extensively these various models.
On the other hand, μt can be treated as a stochastic process that depends on time through a
hierarchical specification.

10.2.2 Dynamic linear model

We consider Dynamic Linear Models (DLMs) or state-space models as in [28] and [29] as our main
choice for non-stationary modelling of the location parameter of the GEV distribution. We focus
on DLMs to assess whether any short-term changes can occur in the extremal-type distribution. If
zt , t = 1, 2, . . . represents a vector of observations of dimension r at time t, following the notation
in [29], a DLM for zt is specified as,

zt = F′
t θt + vt , vt ∼ N(0, Vt) (10.9)
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θt = Gt θt−1 + wt , wt ∼ N(0, Wt) (10.10)

θ0|D0 ∼ N(m0, C0) (10.11)

where F′
t is assumed to be a known (r × n) regression matrix and Gt is assumed as a known (n × n)

state matrix. Equation 10.9 defines the observation equation of the DLM and the variance of the
observation error is given by the r × r matrix Vt . Equation 10.10 is called the system or evolution
equation and Wt is the n × n variance–covariance matrix of the evolution error. The errors vt and
wt are generally assumed to be mutually independent. To obtain Bayesian inference on the state
vector of the DLM, a prior distribution on the initial state is needed and is given by equation 10.11,
where m0 defines the forecaster’s initial belief about the level θ0 and C0 is the associated measure
of uncertainty. At the lack of any true prior information, we will adopt a non-informative prior
where the mean level is fixed to an arbitrary point and C0 assumes a large value. The quadruple
(Ft , Gt , Vt , Wt) characterizes completely the DLM, so different quadruples define different subsets
of the general class of DLMs.

10.2.3 DLMs and the GEV distribution

A special case of the quadruple is given by (1, 1, V , W), which is referred to as a first-order polynomial
DLM in [29]. DLMs had been used by [12] and [16] for time-varying extreme value models. [12]
outlines a semi parametric approach for smoothing extremes with applications to athletic records
and temperature data. On the other hand, [16] consider DLMs for assessing dynamic trends and
space–time structures for extreme values of ozone levels. Here we follow [16] and focus our presen-
tation for the case of a time-varying location parameter.

Let {y1, y2, . . . , yn} be independent realizations from a GEV distribution (μt , σ , ξ) conditional
on model parameters. Assume that the temporal dependency on the location parameter is modelled
through a DLM as just described above. For this case, the likelihood function is:

L({μt}n
t=1 ξ , σ | {yt}n

t=1) =
n∏

t=1

1
σ

[
1 + ξ

(
yt − μt

σ

)]−(1+ 1
ξ
)

+

exp

{
−

[
1 + ξ

(
yt − μt

σ

)]− 1
ξ

+

}
. (10.12)

Assuming a first-order polynomial DLM (1, 1, V , W) on μt , we have

μt = θt + vt , vt ∼ N(0, V) (10.13)

θt = θt−1 + wt , wt ∼ N(0, W) (10.14)

In [7] the authors argue that prior eliciting in terms of quantiles or quantile differences is to
be preferred over priors on GEV parameters for constant modelling situations. Because of the
complexities of a DLM-time-varying GEV model, we choose priors on the GEV parameters. The
observational equation in 10.13 defines a prior for each μt conditional on θt and V , μt ∼ N(θt , V),
t = 1, . . . , n. We adopt independent normal priors for log σ and ξ ,

log σ ∼ N(Mσ , Vσ ), ξ ∼ N(Mξ , Vξ ) (10.15)

For V we adopt an inverse gamma prior, V ∼ IG(a, b), which provides a conditionally conju-
gate structure for this parameter. We adopt discount factors as in [29] to deal with the evolution
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variance W . Briefly, we can say that the discount factor represents the change of information on state
parameters from time t − 1 to time t, which in [16] has proven its use for temporal and state-space
modelling of extremes within the DLM framework.

10.2.4 MCMC for DLM-GEV distribution

The joint posterior distribution for all the model parameters, ({μt}n
t=1, ξ , σ , {θt}n

t=1, V) given the
data {yt}n

t=1 is

p({μt}n
t=1, ξ , σ , {θt}n

t=1, V |{yt}n
t=1) ∝ L({μt}n

t=1 ξ , σ | {yt}n
t=1)

n∏
t=1

[
1

V 1/2 exp
{
− (μt − θt)2

2 V

}
exp

{
− (θt − θt−1)2

2 W

}]

exp

{
− (ξ − Mξ )2

2 Vξ

}
exp

{
− (log σ − Mσ )2

2 Vσ

}
V−(a+1) exp(−b/V) (10.16)

Posterior draws can be obtained through full conditional draws of each parameter based on the
Metropolis or Metropolis–Hastings algorithm. For example, to draw the shape parameter ξ at
iteration i + 1,

1. We sample ξ i+1 from a normal distribution centred at ξ i which defines a symmetric proposal
distribution based on a random walk.

2. We compute α(ξ i, ξ i+1) = min
{

1 p(ξ i+1)
p(ξ i)

}
, where p(ξ i+1) denotes the full conditional

posterior distribution from Equation 10.16 evaluated at the proposed value and p(ξ i) is the
full conditional posterior evaluated at the previous sampled value.

3. Generate u from a U(0, 1) distribution. If u < α(ξ i, ξ i+1), we accept the proposed value
ξ i+1 as our current point in the chain. Otherwise, we reject ξ i+1 and keep the previous
point ξ i.

Sampling σ and μt follows similar steps. Specifically, we draw each μt individually and use the
prior as the proposal distribution. This leads into a Metropolis ratio that exclusively depends on the
full conditional distribution of μt . More details on this sampling strategy appear in [16]. To draw
{θt}n

t=0 from its full conditional distribution, we use Forward Filtering and Backward Simulation
(FFBS) as in [2] and [11] which, as mentioned in [28], is central to MCMC implementations of
conditionally linear normal models. In our case and following Chapter 4 of [29], the state posterior
distributions conditional on all other model parameters are computed sequentially in time using
the following recursive equations. If δ denotes the DLM discount factor so that W = (1−δ)

δ Ct−1,
and Dt represents all the information available up to time t, for t = 1, 2, . . . , n

(θt|Dt−1) = N(mt−1, Rt), Rt = Ct−1 + W = Ct−1/δ

(μt|θt , Dt−1) = N(mt−1, Qt), Qt = Rt + V

(θt|Dt) = N(mt , Ct), mt = mt−1 + At(μt − mt−1) , Ct = AtV , At = Rt/Qt (10.17)

To perform the backward simulation at time t = n, we draw θn from (θn|Dn) and draw the other
θt parameters via retrospective filtering so for t = n − 1, n − 2, . . . , 0, θt is drawn conditionally on
θt+1 from a N(ht , Ht) where
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ht = mt + δ(θt+1 − mt), Ht = Ct(1 − δ). (10.18)

The posterior simulation for the GEV-DLM model proposed in (10.12–10.14) can be summarized
as follows. At iteration i + 1, we

• Draw μi+1
t |yt , μi

t , σ i, ξ i, θ i
t , V i, for t = 1, . . . , n with individual Metropolis steps.

• Draw σ i+1|{yt}n
t=1, {μi+1

t }n
t=1, σ i, ξ i with a Metropolis step.

• Draw ξ i+1|{yt}n
t=1, {μi+1

t }n
t=1, σ i+1, ξ i with a Metropolis step.

• Draw {θ i+1
t }n

t=1|{μi+1
t }n

t=1, V i via FFBS as described in (10.17–10.18).

• Draw V i+1|{μi+1
t }n

t=1, {θ i+1
t }n

t=1 from an inverse-gamma distribution.

Figure 10.3 shows the posterior mean of μt and θt with a 95% probability interval for θt based on our
MCMC approach for the Maiquetía rainfall time series with a discount factor δ = 0.9 and a burn-in
period of 30000 iterations. The estimated parameters are consistent with a notion of more intense
extremes in recent years. The changes in location parameter from the DLM-GEV are nonlinear and
remarkably different from an estimated trend based only on a deterministic line where the intercept
and slope area fitted via MLE. Furthermore, Figure 10.4 shows the posterior mean estimates of
predictive GEV quantiles for four different probability levels: 95%, 75%, 50% and 5% based on
our modelling approach and with the Maiquetía extreme rainfall measurements. These estimates
were more stable than the parameter estimates but clearly exhibit the non-stationary behaviour and
skewness that is typically present in block maxima.
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Figure 10.3 Posterior mean of μt and θt. 95% probability interval for μt under the GEV-DLM for
Maiquetía rainfall data
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Figure 10.4 Posterior predictive quantiles based on GEV-DLM model for Maiquetía rainfall data

10.3 A spatial GEV distribution

10.3.1 Introduction

The analysis of extremes from a spatial perspective can arise as a natural extension to the time-vary-
ing GEV distribution-DLM models described previously. The main scope of these spatial models
considers the theory and applications of Gauss Markov Random Fields (GMRFs) as described in
[21], which also presents the connections of GRMFs to structural time series in the form of DLMs.
Here we consider output of the Penn State/NCAR mesoscale (MM5) Regional Climate Model
(RCM) which was driven by a NCAR/DOE parallel climate model. A similar output was previously
analysed in [8]. The output contains extreme winter (December–January–February) precipitation
of a 20-year control run that assumes current levels of greenhouse gases and begins in 1995. The
spatial domain of the RCM includes 616 (28 × 22) grid points covering the western United States
and southwestern Canada. Figure 10.5 shows maps of the output precipitation corresponding to two
selected years. For year 2004, the extreme values are more intense in regions covering the Pacific
coast, southwestern Canada and Arizona. Figure 10.6 shows the grid points over the spatial domain
along with twenty-five locations that were held out and treated as missing in precipitation for all 20
years to assess the predictive ability of our models.

10.3.2 Objective and Gauss Markov random fields

The goal of our analysis is to treat the RCM output as data and to develop a hierarchical model
around the GEV distribution that permits the characterization of the extremes through predictive
quantiles, which could assist climate modellers to evaluate the performance of such as RCM. We
are not comparing the results from our RCM analysis to real precipitation measurements arising
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Figure 10.5 Two years of extreme precipitation for the MM5 Regional Climate Model.
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Figure 10.6 Grid points for the Regional Climate Model and holdout locations.
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Figure 10.7 Stencils of the precision matrix for a IGMRF second-order neighbourhood structure.

from station or satellite data. From a modelling standpoint, GMRFs provide a structure defined
through neighbours and precision matrices that has a graphical representation and is attractive to
represent spatial relationships on high-dimensional output from climate models. The nodes and
vertices representing the graph of the GMRF correspond to points on a grid and neighbours. If Q
represents the precision matrix of the GMRF, a point (node) i is connected to a point j or i ∼ j,
if and only if Qij 	= 0. Different specifications of the matrix Q provide different spatial structures.
In particular, our models consider a precision matrix from a biharmonic difference operator which
corresponds to an intrinsic (improper) GMRF as in Chapter 3 of [21]. The schematic of Figure 10.7
gives this second-order neighbourhood structure where the point of reference is the node with
the associated highest value and corrections are imposed for when this node is near a boundary.
The hierarchical model we propose to analyse the RCM output depends on a likelihood based
on the GEV distribution and a prior level on parameters that involve this second-order IGMRF.
For example [8] considered an IGMRF prior based on a first-order neighbourhood. A potential
advantage of the second-order prior over a first-order structure, is that it adds extra flexibility to
represent dependencies for localized climate phenomena like regional storms.

10.3.3 modelling strategy

More specifically, we assume that Yst ∼ GEV(μ∗
st , σs, ξ); s = 1, . . . , n; t = 1, . . . , 20 are condi-

tionally independent where Yst represents precipitation from the RCM at the grid location s and
at time t. In our case, n = 616, the number of grid point locations being considered in our analysis.
Therefore the probability distribution for Yst has the form,

H(yst|μ∗
st , σs, ξ) = exp

{
−

[
1 + ξ

(
yst − μ∗

st
σs

)]−1/ξ

+

}
(10.19)

μ∗
st = μs + φt (10.20)

so μ∗
st has been additively decomposed in space and time. The scale parameter σs is allowed to vary

in space while the shape parameter ξ is kept fixed across space and time with a prior distribution
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(ξ − 0.5) ∼ Beta(9, 5) which guarantees that −0.5 < ξ < 0.5. This prior distribution was pro-
posed in [17] and has been used as a penalization term in a GEV likelihood function in low sample
size situations. This prior is not overly informative and is restricted to values that are sensible in
studies of extreme precipitation.

Furthermore, we introduce vectors to represent a spatial component for the location and scale
parameters respectively, μ = (μ1, . . . , μn), σ = (σ1, . . . , σn) and η = vec(μ, log(σ )) is a vector
that represents the concatenation of the elements in μ and the logarithm of the elements in σ . We
model η as,

η = (I2 ⊗ X)B + U + ε, (10.21)

ε ∼ N(0, T ⊗ In), (10.22)

U ∼ GMRF(0, θ ⊗ Q), (10.23)

T ∼ Wishart(nT , V T), (10.24)

θ ∼ Wishart(nθ , Vθ ), (10.25)

B ∼ N(0, τBI10). (10.26)

For this specification both T ⊗ In and θ ⊗ Q are precision matrices, where Q depends on the
neighbourhood structure, ⊗ represents a Kronecker product and Ik is an identity matrix of dimen-
sion k. X is a matrix of covariates with p = 5 columns including an intercept, the longitudes, lati-
tudes and altitudes of each grid point location and a vector indicating whether a grid point is located
over the ocean or land. We expect that these covariates account for the variability as well as some of
the spatial patterns in η. B is a 10 (2p)-dimensional vector of regression coefficients where its first
five elements are associated to μ and the second five elements to σ . The spatial properties of U are
defined through a GMRF prior which has a precision matrix θ ⊗ Q . Here Q is defined through the
construction of a second-order intrinsic GRMF as described in Chapter 3 of [21] and illustrated in
Figure 10.7. The second-order precision matrix Q is not a full rank matrix, and so the GMRF prior
for U is not a proper probability distribution. Therefore, we constrain U so that (I2 ⊗ E)′U = 0
where E is a n × 3 matrix whose columns are the eigenvectors of Q with zero eigenvalues. This
constrain guarantees a proper prior on U and allows us to improve on the computational efficiencies
of our MCMC simulations.

In addition, θ is a 2 × 2 positive definite matrix that we model through a Wishart prior and gives
the precision matrix of the blocks μ and σ . The term ε represents global variability in η that is not
captured by the model covariates. Each element of ε is modelled independently at each grid location
with a bivariate normal random variable with a 2 × 2 precision matrix T, that we also model through
a Wishart prior. The time term for μ∗

st , φt , follows a N(β1(t − t̄), v), t = 1, . . . , 20, so β1 is used to
assess for a potential annual shift in the GEV location parameter over the 20-year control run. We
assigned flat prior distributions on both β1 and v.

10.3.4 MCMC approach

The following steps describe the ith iteration of our MCMC method to sample model parameters
and imputed values at held out locations in a Gibbs sampling as in [13] and resembling some of our
GEV-DLM analysis. y represents the full set of observed and inputed data. φ = (φ1, . . . , φ20).

• For a held out location s, we impute Ys,t from the GEV distribution, Y(i)
st ∼ GEV(μ

(i−1)
s +

φ
(i−1)
t , σ (i−1)

s , ξ(i−1)) for t = 1, . . . , 20.
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• We draw η(i)|y, B(i−1), U(i−1), φ(i−1), T(i−1), ξ(i−1), X via Metropolis steps for the pair of
values μ

(i)
s and log(σ (i)

s ) at each location s = 1, . . . , n where n = 616 is the number of grid
point locations.

• We use a random walk Metropolis step to draw φ
(i)
t |y, η(i), ξ(i−1), β(i−1), v(i−1) for t =

1, . . . , 20.
• We directly draw β(i)|v(i−1), φ(i) and v(i)|β(i), φ(i) from normal and inverse-gamma distri-

butions respectively.
• We use random walk Metropolis step to draw ξ(i)|y, η(i), φ(i).
• We draw B(i−1)|η(i), U(i−1), T(i−1), X from a multivariate normal with mean vector

μB = �B(T(i−1) ⊗ X′)(η(i) − U(i−1)) and covariance matrix �B = (τBI10 + T(i−1) ⊗
X′X)−1.

• We draw U i|η(i), T(i−1), B(i), θ (i−1), X by first generating U∗ from a NC(bU , Q U) where
bU = (T(i−1) ⊗ In)η(i) − (T(i−1) ⊗ X)B(i) and Q U = (T(i−1) ⊗ In) + (θ (i−1) ⊗ Q).
NC designates the canonical parameterization of a GMRF as in [21]. We then correct for the
linear constraint (I2 ⊗ E)

′
U = 0, via the method of conditioning by Kriging as detailed in [21],

page 37. This leads to the expression, U(i) = (I2 ⊗ (In − EE
′
))U∗. The matrix (I2 ⊗ (In −

EE′)) is the perpendicular projection operator that projects U∗ into the column space of Q .
• We draw T(i)|η(i), B(i), U(i), X from a Wishart(nT + n, (V T + C′C)−1) where C is a n × 2

matrix with columns μ(i) − XB(i)
1,...,p − U(i)

1,...,n and log(σ (i)) − XB(i)
p+1,...,2p − U(i)

n+1,...,2n,
and where n = 616 is the number of grid points and p = 5 is the number of model covariates,
including an intercept. The notation Aj,...,k with j ≤ k represents the vector formed with the
consecutive entries of A starting from element j and ending in element k.

• Finally, we draw θ (i)|D, Q from a Wishart(nθ + n, (Vθ + D′Q D)−1) where n = 616 and D
is a n × 2 matrix with columns formed by the vectors U(i)

1,...,n and U(i)
n+1,...,2n respectively.

10.3.5 Analysis of the RCM output

Figure 10.8 shows maps for the posterior mean estimates for the vector of location and scale param-
eters respectively based on the MCMC described in Section 10.3.4. The posterior estimates μ were
higher at most locations along the Pacific coast, from Canada to central California, as well as loca-
tions in central Arizona, suggesting that annual precipitation maxima were generally more extreme
in these areas. The estimates of σ were higher along the Pacific coast of Washington state and British
Columbia, along the Sacramento Valley of northern and central California, the coast of southern
California, and in southern Arizona. This suggests that the distribution of annual precipitation
maxima in these areas is more variable than in other areas.

Figure 10.9 shows the posterior distributions of ξ , the constant shape parameter, and of β1, the
slope of the location parameter trend. The posterior distribution of ξ has a mean of 0.063 and a
standard deviation of 0.0083. This is very different compared to the prior distribution of ξ , which
is a shifted beta distribution on [−0.5, 0.5] with a mean of 0.1 and a standard deviation of 0.12.
The posterior probability that ξ > 0 is close to one, which corresponds to a Fréchet case. However
the range of values for ξ is lower than that traditionally obtained with GEV distribution fits to real
measurements of precipitation. On the other hand, the posterior distribution of β1 has a posterior
mean of −0.016, but a standard deviation of 0.11, not showing any evidence that β1 differs from
zero. This indicates that over the 20 years of control runs for the RCM output, our statistical model
is not able to detect any deterministic time changes in the GEV location parameters. Maps of pos-
terior predictive quantiles of the distribution of annual precipitation maxima are shown in Figure
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Figure 10.8 Posterior mean estimates for μ and σ for the RCM output.
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Figure 10.9 Posterior distributions for shape and slope parameters. RCM output.

10.10. These maps are based on posterior predictive samples and not on GEV quantiles or GEV
return levels. All of these quantiles are relatively high along the Pacific coast from British Columbia
through northern California, through northern and central California, and in central Arizona. The
annual precipitation maxima in these areas are higher than in other areas of the spatial domain, but
rarely, very extreme. In terms of posterior predictive evaluations, Figure 10.11 shows histograms of
samples from the posterior predictive distribution corresponding to the held-out values of yst at
four different locations. The four locations were selected from the 25 originally held out locations
and to be roughly representative of the northwest, northeast, southwest, and southeast regions of
the study area. Vertical bars show the posterior predictive median and the 0.95 posterior predictive
quantile based on the predictive samples. The small vertical lines along the x-axis show the actual
20 observed (output) values that were held out at each of the four locations. The observations
are in accordance with our predictive distribution and were computed under the assumption of a
zero-trend parameter. Similar figures were obtained for other held out locations. Figure 10.12 shows
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Figure 10.10 Posterior predictive percentiles at four levels: 50%,75%, 90% and 99% for the RCM
output.

the posterior Distributions for each of the elements in B. The first row of histograms corresponds to
the parameters associated withμ while the second row corresponds toσ . The covariates that appear
more relevant are those associated with longitude, latitude and relative position to ocean. The
latitude coefficients show a negative change for both μ and σ , indicating that annual precipitation
maxima become both generally smaller and less variable with increasing latitude. The longitude
coefficients also show a negative change with both μ and σ , indicating that annual precipitation
maxima are both generally smaller and less variable in the eastern portion of the study area than in
the western portion. The elevation coefficients indicate a positive change on μ and σ , indicating
that in general annual precipitation maxima are both more extreme and more variable at higher
elevations, however, this change is anticipated to be rather small. The coefficients for the ocean
indicator variable induce a negative change for μ and σ , so that annual precipitation maxima are
both less extreme and less variable over the ocean than over land.



978–0–19–969560–7 10-Damien-c10-drv Damien (Typeset by SPi) 197 of 696 September 11, 2012 18:23

OUP UNCORRECTED PROOF – REVISES, 11/9/2012, SPi

Samples from Posterior Predictive Distribution

D
en

si
ty

0 50 100 150 200

0.000

0.015

0.030

Lat 48.5 Long −122.3

Median 0.95 Quantile

| | || ||| ||| ||| || || |||

Samples from Posterior Predictive Distribution

D
en

si
ty

0 50 100 150 200

0.000

0.015

0.030

Lat 48.3 Long −109.7

Median 0.95 Quantile

|| | || ||| |||| ||| || | ||

Samples from Posterior Predictive Distribution

D
en

si
ty

0 50 100 150 200

0.000

0.015

0.030

Lat 34.1 Long −117.2

Median 0.95 Quantile

| || | || | || || | || || || ||

Samples from Posterior Predictive Distribution

D
en

si
ty

0 50 100 150 200

0.000

0.015

0.030

Lat 34.4 Long −105.7

Median 0.95 Quantile

||| | ||||| || | || ||| | ||

Figure 10.11 RCM output analysis. Predictive posterior distribution at four held out grid points.
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Figure 10.12 RCM analysis. Posterior distributions for regression parameters.
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10.4 Conclusions

This chapter presents a general class of models to study extreme values based on the GEV distri-
bution and that rely on time domain and spatial latent components. These models had not been
available until recently and are thanks to the developments of MCMC approaches. In particular,
dynamic models as described in [29] and [28] provide a flexible approach to deal with time-varying
extremes via MCMC algorithms based on FFBS, in contrast with the traditional deterministic
parameter regression models. Interesting developments in this area had arisen from the Particle Fil-
ter perspective starting from the work by [12] and more recently extended by [9], both emphasizing
the analysis of the athletics dataset of [20]. In addition, [18] present a different framework where
the time dependence in extremes is modelled through AR and MA with innovations arising from
the Gumbel distribution and illustrated for extreme returns of daily stock data. From the spatial
or spatial temporal perspective, some of the main model developments for the study of extremes
arose from the Bayesian hierarchical perspective with MCMC methods initiated by [3] and also
considered in for example, [16], [22] and [8]. As shown in this chapter, these modelling approaches
had proven their value and flexibility in the representation of extremal phenomena from station
data or from climate model output in high-dimensional situations. However, the main drawback
of these approaches is that they rely on assumptions of conditional independence which may not be
adequate to represent the spatial dependencies of extremes. Developments based on Copulas as in
[23] and [14] and the Max stable process as in [24] through composite likelihood methods combined
with MCMC as in [19], provide some examples of the recent focus for modelling spatial extremes
from a Bayesian point-of-view.
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