
R Commands for –
Analysis of Variance, Design, and Regression:

Linear Modeling of Unbalanced Data

Ronald Christensen
Department of Mathematics and Statistics

University of New Mexico
© 2020



vii

This is a work in progress!
But it should be useful as is.





Preface

This is not a general introduction to programming in R! It is merely an introduction to gener-
ating the results in the book. As much as practicable, the chapters and sections of this guide give
commands to generate results in the corresponding chapters and sections of the book. You should
be able to copy the code given here and run it in R. An exception is that you will need to modify the
locations associated with data files. Also, if you are copying R code from a pdf file into R, “tilde”
˜

will often copy incorrectly so that you may need to delete the copied version of tilde and retype
it. This may also be true for other characters like “caret” ˆ.

I learned how to run R by reading (and editing) Appendix C in Christensen et al. (2010). Two
other tools that I have found very useful are Tom Short’s R Reference card,
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
and Robert I. Kabacoff’s Quick-R website,
http://www.statmethods.net/index.html.
Given that I did not bother to learn R until the late oughts, it should not be surprising that pro-
gramming is not my forte. I know lots of people who could create a much better introduction to
programming in R than me, but there was no one else to perform this particular task.

As dismaying as I find the fact, it seems that relatively few students of statistics read books from
beginning to end. Even I do not expect students to read a computing manual from beginning to end.
As a result, I have made a positive effort to be repetitive between chapters about ideas that I think
are particular important. My ideal is that people would read the first three chapters and then skip
around as needed. Chapter 3 contains the core ideas.

Ronald Christensen
Albuquerque, New Mexico

March, 2015

ix

http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://www.statmethods.net/index.html




Contents

Preface ix

Table of Contents ix

1 Introduction 1
1.1 Getting started 1
1.2 Plots and probabilities 1
1.3 Reading data 2
1.4 Elementary transformations 3
1.5 Housekeeping 3
1.6 Libraries/Packages 3

2 One-Sample 5
2.1 Introduction 5
2.2 Parametric inference 5

2.2.1 Test µ = 10 5
2.2.2 Confidence intervals 6
2.2.3 P values 6

2.3 Prediction 6
2.4 Model testing 7
2.5 Normal plots 7

2.5.1 Shapiro-Francia test 7
2.6 Elementary transformations 8
2.7 Inference about σ 8

3 Defining Linear Models 9
3.1 One sample 12
3.2 Two samples 13
3.3 Regression 13

3.3.1 Simple linear regression 13
3.3.2 Polynomial regression 14
3.3.3 Multiple regression 14
3.3.4 Offsets 15

3.4 ANOVA 15
3.4.1 One-way ANOVA 15
3.4.2 Two-way ANOVA 16

3.4.2.1 Interaction 16
3.4.2.2 Additive effects 16
3.4.2.3 Sequential fitting 17

3.5 ACOVA and interaction 18
3.5.1 ACOVA: parallel lines 18
3.5.2 Interaction: skew lines 18

xi



xii CONTENTS

3.6 Interaction in multiple regression 19
3.7 Hierarchical and nested models 19
3.8 Higher-order models 20

4 Two Samples 23
4.1 Two correlated samples: paired comparisons 23
4.2 Two independent samples with equal variances 24
4.3 Two independent samples with unequal variances 25
4.4 Testing equality of the variances 25

5 Contingency Tables 27
5.1 One binomial sample 27

5.1.1 Sign test 27
5.2 Two independent binomial samples 27
5.3 One multinomial sample 28
5.4 Two independent multinomial samples 28
5.5 Several independent multinomial samples 29
5.6 Lancaster–Irwin partitioning 30

6 Simple Linear Regression 31
6.6 An alternative model 33
6.7 Correlation 33
6.8 Two-sample problems 33
6.9 Multiple Regression 33

7 Model Checking 35
7.1 Recognizing randomness 35
7.2 Checking Assumptions 35

7.2.1 Another example: Hooker data 35
7.2.2 Outliers: Coleman data 36
7.2.3 Effects of high leverage 36

7.3 Transformations 36
7.3.1 Circle of transformations 36
7.3.2 Box-Cox transformations 36
7.3.3 Constructed variables 37

7.4 Extras 37

8 Lack of Fit and Nonparametric Regression 39
8.1 Polynomial regression 39

8.1.1 Picking a polynomial 39
8.1.1.1 Orthogonal Polynomials 40

8.1.2 Exploring the chosen polynomial 40
8.2 Polynomial regression and leverages 41
8.3 Other basis functions 41

8.3.1 Sines and cosines 41
8.3.2 Haar wavelets 42

8.4 Partitioning methods 42
8.4.1 Utts’ method 43

8.5 Splines 44
8.6 Fisher’s test 45



CONTENTS xiii

9 Multiple Regression and Diagnostics 47
9.1 Basic commands 47
9.8 More on model testing 48
9.10 Generalized additive models 49

9.10.1 Other useful tools? 50

10 Diagnostics and Variable Selection 51
10.1 Diagnostics 51
10.2 Best subsets 51
10.3 Stepwise methods 52
10.4 Model selection and case deletion 53
10.5 Lasso 53

10.5.0.1 Pollution data 54
10.5.1 Cross-validation for tuning parameter 54

11 Multiple Regression: Matrix Formulation 57
11.6 Principal component regression 59

12 One-Way ANOVA 61
12.1 Suicide data 61
12.2 Regression analysis of ANOVA data 62
12.3 Modeling contrasts 62
12.4 One-Way ANOVA and polynomial regression 63

12.4.1 Fisher’s lack-of-fit test 63
12.4.2 Figures 64

12.5 Weighted least squares 64
12.5.1 Unbalanced weights 65
12.5.2 Nondiagonal case 65

13 Multiple Comparisons 67
13.1 “Fisher’s” LSD 67
13.2 Bonferroni adjustments 67
13.3 Scheffé’s method 67
13.4 Studentized range methods 68

13.4.1 Honest John’s significant difference 68

14 Two-Way ANOVA 69
14.1 Unbalanced Two-way ANOVA 69
14.2 Modeling contrasts 71

14.2.1 Nonequivalence of Tests 71
14.3 Regression modeling 72
14.4 Homologous factors 74

14.4.1 Symmetric additive effects 74
14.4.2 Skew symmetric additive effects 75
14.4.3 Symmetry 76

15 ACOVA and Interactions 77
15.1 One covariate example 77
15.2 Regression modeling 78
15.3 ACOVA and two-way ANOVA 78
15.4 Near replicate lack-or-fit tests 78



xiv CONTENTS

16 Multifactor Structures 81
16.1 Unbalanced Three-way: Moisture data 81

16.1.1 Computing 82
16.2 Balanced three-way: Abrasion resistance data 84
16.3 Higher order structures 85

17 Basic Experimental Designs 87
17.4 Randomized complete block designs 87

17.4.1 Paired comparisons 88
17.5 Latin squares 88
17.6 Balanced incomplete blocks 89
17.7 Youden squares 89

18 Factorial Treatments 91
18.1 91
18.2 RCB Analysis 91
18.4 Interaction in a Latin square 91
18.5 A balanced incomplete block design 92
18.6 Extensions of Latin Squares 93

19 Dependent Data 95
19.1 Split plots 95

19.1.1 Whole plot analysis 95
19.1.2 Interaction plots 96

19.2 Split plots: abrasion resistance 97
19.2.1 Interaction plots 99
19.2.2 Unbalanced subplots 100
19.2.3 Whole plot analysis with Error 1 residual plots 100
19.2.4 Final models 101

19.3 Multivariate ANOVA 102
19.4 Random effects and subsampling 104

19.4.1 Subsampling 104
19.4.2 Random Effects 104

20 Logistic Regression 107
20.1 Models for binomial data 107
20.2 Simple linear logistic regression 107

20.2.1 Goodness of fit tests 107
20.2.2 Assessing predictive probabilities 107
20.2.3 Case diagnostics 108

20.3 Model testing 108
20.4 Fitting logistic models 108
20.5 Binary data 108

20.5.1 Goodness of fit tests 109
20.5.2 Case diagnostics 109
20.5.3 Assessing predictive probabilities 109

20.6 Multiple logistic regression 109
20.6.1 Best subset logistic regression 110
20.6.2 Stepwise logistic regression 111

20.7 ANOVA models 111
20.8 Ordered categories 111



Contents ix

21 Log-Linear Models 113
21.1 Models for two-factor tables 113

21.1.1 Lancaster-Irwin Partitioning 114
21.2 Models for three-factor tables 115

21.2.1 Testing models 115
21.3 Estimation and odds ratios 115
21.4 Higher dimensional tables 116
21.5 Ordered categories 117
21.6 Offsets 118
21.7 Relation to logistic models 119
21.8 Multinomial responses 119
21.9 Logistic discrimination and allocation 119

22 Exponential and Gamma Regression: Time to Event Data 121
22.1 Exponential regression 121
22.2 Gamma regression 122

22.2.1 Offsets 122

23 Nonlinear Regression 125
23.1 Using nls 125
23.2 Linearized models 125

Appendix A: Matrices and Vectors 129
A.8 Eigenvalues and vectors 129

24 More Stuff 131

Index 133





Chapter 1

Introduction

1.1 Getting started

The first order of business is to download R. Vist the site http://www.r-project.org/ and
follow the instructions.

When you open R, go to the File menu and open a “new script” window. Copy the scripts given
here into the new window. To run part of the script, highlight the part you want to run, right click
your mouse, and choose “Run line or selection.”

There is not a lot of computing associated with Chapter 1 of the book. This chapter introduces
some elementary tools related to probability and graphing and some features of R that are useful.

1.2 Plots and probabilities

The code below was used to produce Figure 1.1. It begins by setting the values in the vector x as
running from −3 to 3 at intervals 0.05 units apart. y uses dnorm to take on the values of the normal
density. dnorm, get it? The three arguments in dnorm are: where to evaluate the normal density
function, the mean, and the standard deviation (not the variance). The rest of the commands are used
to set the labels and the vertical line for the plot.

x=seq(-3,3,.05)
y=dnorm(x,0,1)
y2=c(0,dnorm(1.6,0,1))
x2=c(1.6,1.6)
x1=c(-3,3)
y1=c(0,0)
plot(x,y,type="l",ylim=c(0,.4),ylab="",xlab="",at=c(0,1.6),labels=F)
mtext(expression(K(1-alpha)),line=2.5,side=1,at=1.6,padj=-1.25,cex=1.15)
mtext(expression(0),line=2.5,side=1,at=0,padj=-2.25,cex=1.15)
mtext(expression(0),line=2.5,side=2,at=0,padj=2.5,cex=1.1)
lines(x2,y2,type="l")
lines(x1,y1,type="l")
text(0,0.04,expression(1-alpha),lwd=2,cex=1.5)
text(1.9,0.03,expression(alpha),lwd=2,cex=1.5)

Figure 1.2 plots three curves at once. One is a normal density and the other two are t(3) and t(8)
densities.

x=seq(-4,4,.05)
y=dnorm(x,0,1)
y1=dt(x,3)
y3=dt(x,8)
plot(x,y,type="l",ylim=c(0,.4),ylab="",xlab="",lty=1)
lines(x,y3,type="l",lty=3)
lines(x,y1,type="l",lty=2)

1

http://www.r-project.org/


2 1. INTRODUCTION

legend("topright",c("N(0,1)","t(8)","t(3)"),lty=c(1,3,2))

The purpose of including this code is twofold. First, it illustrates that other distributions, in this
case the t distribution, work similarly to the normal, e.g. dt(x,3) evaluates the density of the t(3)
distribution. Second, it illustrates plotting three functions on the same graph.

Other plots in Chapter 1 use the commands y=dchisq(x,8) and y=df(x,3,18) to illus-
trate the densities of χ2(8) and F(3,18) distributions. To evaluate Bin(N, p) and Pois(λ ) densities,
use dbinom(x,N,p) and dpois(x,lambda), respectively.

For a random variable y and real numbers u, Pr[y ≤ u] ≡ F(u) is known as the cumulative
distribution function or cdf. If y ∼ N(µ,σ2), the cdf can be evaluated as pnorm(u,mu,sigma)
where p stands for probability. Other distributions work similarly.

Figure 2.3 is very similar to Figure 1.1 except that it uses notation t(1−α,df ) instead of K(1−
α). K(1−α) is a generic term but t(1−α,df ) can be computed as qt(.95,df) when, say,
1−α = 0.95. Here q stands for quantile. In general, the quantile associated with a probability α

and a cdf F is the number u such that α = F(u). In the next chapter we will want to generate random
observations from a normal distribution and we will see that it involves a minor modification of the
distributional commands used here.

1.3 Reading data

You cannot analyze data in a computer package without somehow entering it. If the data are not
numerous you might want to enter them by hand. For Example 2.1.1 in the book we might just use,
# Enter data -- not from a data file
y=c(5, 22, 10, 12, 8, 17, 2, 25, 10, 10, 7, 7, 40, 7, 9, 17, 12,
12, 1, 13, 10, 13, 16, 3, 14, 17, 10, 10, 13, 59, 11, 13, 5, 12,
14, 3, 14, 15)

The easiest way to enter most data is to read it into the program. Virtually all of the data in
the book is available on my website, http://www.stat.unm.edu/˜fletcher/newavdr_
data.zip. I think only one of the data files for the book includes labels.

Before reading the data, always look at the data file to identify what it is that you are reading.
For the book, always compare the data file to the list of data in the book before proceeding. Below
is an example of how to read the dropout rate data of Example 2.1.1 into an object called “drop”.
The first line includes the string of characters
"C:\\E-drive\\Books\\ANREG2\\newdata\\ex2-1-1.dat"

that specifies the location of the data file to be read. This will change for every user.

drop <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\ex2-1-1.dat",
sep="",col.names=c("y"))

attach(drop)
drop
summary(drop)

Typing drop by itself lets you see what was read. Typing summary(drop) gives summary statis-
tics. You will see these “read.table” commands in virtually every illustration.

My data files typically do not include column names/labels but if the data file does include
column names, you can change the read.table command to
drop <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\ex2-1-1.dat",

sep="",header=T)
attach(drop)
drop
summary(drop)

My data files are not in the comma separated values format but such files are easily read in R

read.csv("filename.csv")

http://www.stat.unm.edu/~fletcher/newavdr_data.zip
http://www.stat.unm.edu/~fletcher/newavdr_data.zip


1.4 ELEMENTARY TRANSFORMATIONS 3

1.4 Elementary transformations

The operators for addition, subtraction, multiplication, and division are + - * /
Some transformations that you might find useful are

y=log(x)
y=exp(x)
y=sin(x)
y=cos(x)
y=xˆ(3) # Or y=xˆ3 or y=x**3
y=asin(x)

The last transformation is the arcsine transformation whose argument x should be between 0 and 1.
The penultimate transformation is y = x3. (When copying from a pdf to R, the ˆ may need to be
replaced.)

There is no serious programming in this volume. There is at least one simulation including a
for loop listed in the index of www.stat.unm.edu/˜fletcher/R-SL.

1.5 Housekeeping

To get help about a command in R just type help(command).
In the previous section we presented

# Enter data -- not from a data file
y=c(5, 22, 10, 12, 8, 17, 2, 25, 10, 10, 7, 7, 40, 7, 9, 17, 12,
12, 1, 13, 10, 13, 16, 3, 14, 17, 10, 10, 13, 59, 11, 13, 5, 12,
14, 3, 14, 15)

The symbol # allows us to place comments in an R program.
If you have a vector y with 50 observations and then want to do something else with y that

involves only 25 observations you might want to clear the entire workspace so that you can get rid
of R’s expectation that y should have 50 observations. To do this, use

rm(list = ls())

After doing this, you have to start programming from scratch!
Suppose you have a variable y and want to define a new variable, say x, that is 2 times y. It is

perhaps better programming practice to write

x <- 2 * y

but it is fewer keystrokes to write

x = 2*y

Both work.

1.6 Libraries/Packages

One advantage of learning R is that the most up-to-date statistical procedures tend to be made
available first in R. A wide array of methodologies are available as R packages/libraries. In the next
chapter we will use one for testing the normality of a random sample. To use a package, you need
to install it (one time) on your computer. If you want to use the package, you need to call it every
time you fire up R.

install.packages("nortest") #Do this only once on your computer
library(nortest) #Do this once every time you run R (and the package)

Other packages that we will use include: car (regression algorithms due to Fox, Weisberg, and
associates), leaps (best subset regression), lasso2 (lasso regression), MASS (algorithms due
to Venables, Ripley, and associates), and splines (a version of nonparametric regression). By

www.stat.unm.edu/~fletcher/R-SL


4 1. INTRODUCTION

google-ing “r library(name)” you can access pdf files that both give information on the packages
and give details on who was nice enough to provide these tools.

From November 8, 2018, to install a package I have had to run R as an administrator. To
run as administrator I have to find R in the start menu, select the version that I want to run, right
click to get options and go to the “More” option, which allows me to choose administrator. (You
might be able to do this by right clicking the R icon.) Because this has become a pain, I have listed
all of the libraries that are used in this book so they can be installed all at once. (I believe that some
are pre-installed, so you don’t have to install them. You can check what is installed by going to the
load package... menu option.)

install.packages("agricolae")
install.packages("car")
install.packages("cluster")
install.packages("lars")
install.packages("lasso2")
install.packages("leaps")
install.packages("lmtest")
install.packages("MASS")
install.packages("nortest")
install.packages("splines")
install.packages("splines2")
install.packages("stats")
install.packages("bestglm")
install.packages("StepReg")
install.packages("glmulti")
install.packages("lme4")
install.packages("lmerTest")

Information about all available packages is available by going to the R site: https://cran.
r-project.org/web/packages/ I use the terms “package” and “library” interchangeably
(outside of programming R).

https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/


Chapter 2

One-Sample

2.1 Introduction

In the previous chapter we showed how to read a sample of data. Adding one little command,
t.test, computes most of what we need to generate the statistical results in the book, including,
as illustrated below, a test of H0 : µ = 10 for the dropout rate data.

drop <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\ex2-1-1.dat",
sep="",col.names=c("y"))

attach(drop)
drop
t.test(y,mu=10,conf.level = 0.95)

The output from t.test includes both the P value for the specific null hypothesis being tested and
the confidence interval for the specific confidence level 1−α .

Although t.test is very useful for dealing with the data of Chapters 2 and 4, it is of little
help outside those chapters. Most of this book focuses on a much more general R command for
fitting linear models: lm. The next section shows how to generate the “t.test” output using the “lm”
command that we will use in most of this book. Section 2.3 also shows how to incorporate missing
data—something we want to do when deleting outliers.

2.2 Parametric inference

The basic form of the lm command is lm(y ∼ model). Models will be discussed in the next
chapter. For now we just illustrate what needs to be done to get the results in the book. As in the
book, results are presented in three subsections. Deleting the outliers will be handled in the next
section.

2.2.1 Test µ = 10

After entering the data,

dr <- lm((y-10) ˜ 1)
drp=summary(dr)
drp

This provides an estimate that is ȳ−10, the appropriate standard error, t statistic, and P value. If we
were testing H0 : µ = 15 we would use (y-15).

Another less convenient way of doing parametric inference but a more convenient way to per-
form model testing uses the offset command that will be discussed more later.

x=y+1-y # This is just a convenient way to create a vector of 1s
dr <- lm(y ˜ offset(10*x))
drp=summary(dr)
drp

5



6 2. ONE-SAMPLE

2.2.2 Confidence intervals

Computing confidence intervals requires a separate command.
dr <- lm(y ˜ 1)
drp=summary(dr)
drp
confint(dr, level=0.95)

# Or you could compute the confidence intervals from scratch.
R=drp$cov.unscaled
se <- sqrt(diag(R)) * drp$sigma
ci=c(dr$coef-qt(.975,drp$df[2])*se, dr$coef+qt(.975,drp$df[2])*se)
CI95 = matrix(ci,drp$df[1],2)
CI95

For a 1−a confidence interval, after defining a, replace .975 with (1−a/2).
You can also get (very repetitive—a copy for every observation) confidence intervals by using

the command predict(dr,se.fit=T,interval="confidence",level=0.95) after
fitting the model. Deleting the outliers will be handled in the next section.

2.2.3 P values

Although the earlier test output contains a P value, you can compute a P value directly,
dr <- lm((y-10) ˜ 1)
drp=summary(dr)
R=drp$cov.unscaled
se <- sqrt(diag(R)) * drp$sigma
PP=2*pt(-1*abs(dr$coef/se),drp$df[2])
PP

In fact, you could use a similar idea if you want to compute a P value directly from the computed
value of tobs,
dr <- lm(y ˜ 1)
drp=summary(dr)
R=drp$cov.unscaled
se <- sqrt(diag(R)) * drp$sigma
PP=2*pt(-1*abs((dr$coef-10)/se),drp$df[2])
PP

Here, abs((dr$coef-10)/se) is |tobs|.

2.3 Prediction

We illustrate prediction using the drop out data with the two outliers deleted.
# Enter data with outliers deleted.
y=c(5, 22, 10, 12, 8, 17, 2, 25, 10, 10, 7, 7, NA, 7, 9, 17, 12,
12, 1, 13, 10, 13, 16, 3, 14, 17, 10, 10, 13, NA, 11, 13, 5, 12,
14, 3, 14, 15)
dr <- lm(y ˜ 1)
drp=summary(dr)
drp
#prediction
new = data.frame(x=c(1))
predict(lm(y˜1),new,interval="prediction",level=0.95)



2.4 MODEL TESTING 7

You can also get (very repetitive—a copy for every observation) prediction intervals by using
the command
predict(dr,se.fit=T,interval="prediction")
after fitting the model.

2.4 Model testing

Model testing of H0 : µ = 10 for one sample uses two models including a reduced model that
includes an offset and the anova command. By default, lm fits a constant term to every model.
Subtracting 1 from a model, eliminates that default. More on this in Chapter 3.

full <- lm(y ˜ 1)
x=y+1-y # x is a vector of 1s.
red <- lm(y ˜ offset(10*x)-1)
anova(full,red)

2.5 Normal plots

Normal plots occur frequently in the book. A computer program is necessary for finding the normal
scores and extremely convenient for plotting the data and computing W ′. The following commands
provide a normal plot and the W ′ statistic for the complete dropout data y. As in the book, we
illustrate deleting outliers and transforming the data. For the normal plot, the key item is qqnorm.

# Enter data -- not from a data file
y=c(5, 22, 10, 12, 8, 17, 2, 25, 10, 10, 7, 7, 40, 7, 9, 17, 12, 12,
1, 13, 10, 13, 16, 3, 14, 17, 10, 10, 13, 59, 11, 13, 5, 12, 14, 3, 14,
15 )
qqnorm(y,ylab="Drop rates")

# Enter data with observations deleted.
yy=c(5, 22, 10, 12, 8, 17, 2, 25, 10, 10, 7, 7, NA, 7, 9, 17, 12, 12,
1, 13, 10, 13, 16, 3, 14, 17, 10, 10, 13, NA, 11, 13, 5, 12, 14, 3, 14,
15 )
qqnorm(yy,ylab="Drop rates")

#square root transformation of deleted data
yys=sqrt(yy)
qqnorm(yys,ylab="Drop rates")

The illustrations in the book of how normal plots should look used the command
rnorm(n,mu,sigma) to generate a vector of length n containing random observations from
a N(µ,σ2).

2.5.1 Shapiro-Francia test

We can compute the Shapiro-Francia statistic to evaluate normality.

#Compute Shapiro Francia statistic for y.
x=qnorm(ppoints(y))
ys=sort(y)
Wprime=(cor(x,ys))**2
Wprime

Tables are provided in the book for determining if the statistic is significant.
It is also possible to install an R package for testing normality that performs the Shapiro-Francia



8 2. ONE-SAMPLE

test and other normality tests. The first step is to install the appropriate package. This is a one-time
event for your computer. Simply type in install.packages("nortest"). After installing
the package, before you can use it during an R session you need to invoke the package by typing
library(nortest)

You can then use the package to obtain the test via
sf.test(y)

There are some small differences in the computations. I suspect, but am not sure, that they are due
to how the “rankits” are computed. More information about nortest is available at
http://cran.r-project.org/web/packages/nortest/index.html
One normality test that does not require installation of the package is shapiro.test.

I might add that for small sample sizes it is hard to tell if something is normal or not. And for
large sample sizes, for most purposes other than prediction, it does not matter much if the data are
normal.

2.6 Elementary transformations

Transformations were discussed in Chapter 1 of this guide. R commands for the three transforma-
tions discussed here and for the cubed root power transformation are given below. The cubed root
is just to illustrate a general power transformation.
yl=log(y)
ys=sqrt(y)
yas=asin(sqrt(y))
ycr=y**(1/3)

The argument y for the arcsine transformation should be between 0 and 1.

2.7 Inference about σ

I do not know of any R program for doing inference on a single variance so the code below brute
forces the confidence interval. By changing the dependent variable “yy” and its linear model, essen-
tially the same code should work for any linear model.

# Enter data with observations deleted.
yy=c(5, 22, 10, 12, 8, 17, 2, 25, 10, 10, 7, 7, NA, 7, 9, 17, 12, 12,
1, 13, 10, 13, 16, 3, 14, 17, 10, 10, 13, NA, 11, 13, 5, 12, 14, 3, 14,
15 )

#set the alpha level as "a"
a=.05
dd<-lm(yy˜1)
ddd=summary(dd)
ci=c((ddd$sigma**2)*ddd$df[2]/ qchisq(1-a/2,ddd$df[2]),

(ddd$sigma**2)*ddd$df[2]/ qchisq(a/2,ddd$df[2]))
CIa = matrix(ci,1,2)
CIa

http://cran.r-project.org/web/packages/nortest/index.html


Chapter 3

Defining Linear Models

This chapter examines the syntax of R models from the most elementary models to the quite so-
phisticated. We begin with an two examples, to remind those users who are already familiar with
the statistical concepts, of the syntaxes used to specify models in Minitab, R, and SAS. On a first
reading of the manual, you can skip these two examples.

EXAMPLE 3.0.1. Modeling Cheat Sheet. We provide model syntax for models defined in Section
16.1 of the book. All three programs can fit the first form of the model. Minitab ONLY fits the first
form. The R and SAS commands given below are for fitting the second form of the model.

[ABC] ∼= yi jkm = G+Ai +B j +Ck +[AB]i j +[AC]ik +[BC] jk +[ABC]i jk + ei jkm
∼= yi jkm = [ABC]i jk + ei jkm.

[AB][BC] ∼= yi jkm = G+Ai +B j +Ck +[AB]i j +[BC] jk + ei jkm
∼= yi jkm = [AB]i j +[BC] jk + ei jkm.

[AB][C] ∼= yi jkm = G+Ai +B j +Ck +[AB]i j + ei jkm
∼= yi jkm = [AB]i j +Ck + ei jkm.

[A0][A1][A2][C] ∼= yi jkm = G+Ai0 + γ1x j + γ2x2
j +Ai1x j +Ai2x2

j +Ck + ei jkm.

∼= yi jkm = Ai0 +Ai1x j +Ai2x2
j +Ck + ei jkm.

Model Minitab R SAS
[ABC] A|B|C A:B:C-1 A*B*C / noint
[AB][BC] A|B B|C A:B+B:C-1 A*B B*C / noint
[AB][C] A|B C A:B+C-1 A*B C / noint
[A0][A1][A2][C] A|X A|X2 C A+A:X+A:X2+C-1 A A*X A*X2 C / noint

To fit different models, one needs to modify the part of the code that specifies the model. In Minitab’s
glm, models are usually specified in the model dialog box (or on the command line) and X and
X2 have to be specified as covariates. In R, specifying models involves changes to, say, lm(y ∼
A:B+C-1) where A, B, and C all have to be prespecified as factor variables. In SAS’s proc
glm, modeling involves changes to model y = A*B C/noint; where A, B, and C all have to
be prespecified as class variables.

I think the following statements are true. In R the model A*B*C is equivalent to
A+B+C+A:B+A:C+B:C+A:B:C. In Minitab and SAS the model A|B|C is equivalent to A B
A*B C A*C B*C A*B*C. 2

9



10 3. DEFINING LINEAR MODELS

Table 3.1: 2×3 Factor Interactions

a A=factor(a) b B=factor(b) A:B
a1 a2 b1 b2 b3 a1:b1 a1:b2 a1:b3 a2:b1 a2:b2 a2:b3

1 1 0 1 1 0 0 1 0 0 0 0 0
1 1 0 2 0 1 0 0 1 0 0 0 0
1 1 0 3 0 0 1 0 0 1 0 0 0
2 0 1 1 1 0 0 0 0 0 1 0 0
2 0 1 2 0 1 0 0 0 0 0 1 0
2 0 1 3 0 0 1 0 0 0 0 0 1
1 1 0 1 1 0 0 1 0 0 0 0 0
1 1 0 2 0 1 0 0 1 0 0 0 0
1 1 0 3 0 0 1 0 0 1 0 0 0
1 1 0 2 0 1 0 0 1 0 0 0 0
1 1 0 3 0 0 1 0 0 1 0 0 0
2 0 1 1 1 0 0 0 0 0 1 0 0
2 0 1 2 0 1 0 0 0 0 0 1 0
2 0 1 1 1 0 0 0 0 0 1 0 0
2 0 1 3 0 0 1 0 0 0 0 0 1

EXAMPLE 3.0.2. Model Matrices Refresher. This example illustrates the columns of the model
matrix that correspond to various main effects and interactions in an unbalanced 2× 3 two-factor
ANOVA in which the second factor has quantitative levels of 1, 2, 3. Model matrices are not intro-
duced until Section 11.2, so if you have not gotten that far in the book, skip this example.

A and B are factor variables and b has the quantitative levels for the second factor. In R define
bb ≡ b2. Using R modeling code on the left of the congruence symbol and with, on the right hand
side, b known but A, B, γ , and (AB) denoting unknown parameters for the linear models:

A+B - 1 ∼= yi jk = Ai +B j + ei jk

which is equivalent to

A + b + bb - 1 ∼= yi jkm = Ai0 + γ1b j + γ2b2
j + ei jkm.

This works with a quadratic function because the second factor has three levels and three points
determine a quadratic function. If the second factor had 5 quantitative levels, we would need a
fourth degree polynomial in b for it to be equivalent to the B j effects. Similarly, when allowing
interaction,

A:B - 1 ∼= yi jk = (AB)i j + ei jk

which is equivalent to

A + A:b + A:bb - 1 ∼= yi jkm = Ai0 +Ai1b j +Ai2b2
j + ei jkm.

The model matrix columns that correspond to the factor terms and their interactions are given in
Table 3.1. Table 3.2 replaces the B factor with the corresponding regression terms and interactions.
The tables incorporate notation for the elementwise multiplication of vectors. For two vectors

v =

v1
...

vn

 and w =

w1
...

wn

 define v :w ≡

v1w1
...

vnwn

 .

2

This chapter describes general approaches to specifying fixed effect linear models in R. Chapter
3 in the book describes general approaches to statistical inference with Section 3.9 introducing



11

Table 3.2: 2×3 Regression Interactions

a A=factor(a) b bb A:b A:bb
a1 a2 a1:b a2:b a1:bb a2:bb

1 1 0 1 1 1 0 1 0
1 1 0 2 4 2 0 4 0
1 1 0 3 9 3 0 9 0
2 0 1 1 1 0 1 0 1
2 0 1 2 4 0 2 0 4
2 0 1 3 9 0 3 0 9
1 1 0 1 1 1 0 1 0
1 1 0 2 4 2 0 4 0
1 1 0 3 9 3 0 9 0
1 1 0 2 4 2 0 4 0
1 1 0 3 9 3 0 9 0
2 0 1 1 1 0 1 0 1
2 0 1 2 4 0 2 0 4
2 0 1 1 1 0 1 0 1
2 0 1 3 9 0 3 0 9

various linear models that are particularly useful. Most of this chapter is devoted to a discussion
of how to specify those linear models in R. The chapter goes beyond those models because I think
it is useful to consolidate in one place the fundamental ideas of specifying R models. It does not,
however, discuss the random effects models that appear in Chapter 19.

We assume that y is a measurement random variable and that x is some predictor variable or
that x ≡ (x1, . . . ,xp)

′ is a vector of predictor variables. In a computer file all of the observations
on y consist of a column of numbers and the x observations are either a single column of numbers
or p different columns of numbers, one column for each component of the vector x. The compo-
nents of the vector x can either be measurement (continuous) variables, categorical (factor, discrete)
variables, or some combination of the two. We assumed in Section 3.9 of the book that

E(y) = m(x)

for some function m and described a number of different, commonly used, examples. When x con-
tains only measurement variables, we construct regression models, when x contains only category
variables, we construct ANOVA models, when x contains a combination of the two, we construct
ACOVA models.

Of course we have to tell the computer program whether any component of the vector x is
a measurement or category variable. Most computer programs have a default setting that, unless
a variable is specified to be one thing, it is assumed to be the other. R assumes that all numeric
variables are measurement variables, so category variables taking on numeric values have to be
specified as such. Any variable that takes nonnumeric values is automatically taken as a factor.

Also, most computer programs for linear models default to include an intercept term (grand
mean) in every model.

If you know how to define (linear) models in R, it is a simple matter to get R to perform a test
on full and reduced models as in Section 3.1 of the book.
full <- lm(y ˜ full_model)
red <- lm(y ˜ reduced_model)
anova(red,full)

As in Subsection 3.1.1, when there is a biggest model and we want to do a test, use
big <- lm(y ˜ big_model)
full <- lm(y ˜ full_model)
red <- lm(y ˜ reduced_model)
anova(red,full,big)



12 3. DEFINING LINEAR MODELS

This actually reports two F statistics, we want the first.
Alternatively, the commands

fit <- lm(y ˜ model)
fitp=summary(fit)
fitp
anova(fit)

provide both the table of coefficients and a table of sequential sums of squares and error from fitting
linear models. Creating the standard three line ANOVA table in R seems to be a little awkward but
can be constructed as in Chapter 11. R does not like to give the total sum of squares for ANOVA
tables. Another way to get most of the three line ANOVA table is

full <- lm(y ˜ model)
red <- lm(y ˜ 1)
anova(red,full)

Another option is

anova(red,full,big, test="Cp")

Other options for test are ”F”, ”Chisq”
The following are some relatively self-explanatory commands related to use of the “lm” com-

mand.

fit <- lm(y ˜ model) #fit the linear model and store results in "fit"
summary(fit)
coefficients(fit) #estimates of model parameters from "fit"
confint(fit, level=0.95) #CIs for model parameters from "fit"
fitted(fit) #predicted values from "fit"
residuals(fit) #residuals from "fit"
df.residual(fit) #residual degrees of freedom from "fit"
length(y) #number of observations when none are missing
anova(fit) #anova table for "fit"
predict(fit,new,interval="prediction",level=0.95) #from "fit"

The second argument in “predict” is “new” which must contain the data for every variable in the
model at which you want to predict. This can be a single point or a vector for every variable.

new = data.frame(first-x-variable=c(...),...,last-x-variable=c(...))

Here first-x-variable is replaced by whatever you called the first variable in your linear
model, etc. If new is not specified, predict uses the data for the original fitting of the model.

The “aov” command can be used to replace the “lm” command. It seems to fit models the same
way, it merely provides summary output that is a version of anova(fit) rather than outputing
the table of coefficients. I believe that all of the commands listed above for lm also apply to aov.
One advantage of aov is that it allows the specification of random effects, cf. Chapter 19.

3.1 One sample

If all the observations have the same mean value, you often have to use specialized software for this
data structure, like R’s t.test. Often linear models programs do not allow fitting only a common
mean to all observations. If a general program for linear models deals with the possibility, there is
not much to specify. In R just define the model as

y ˜ 1

Here the 1 indicates fitting a grand mean/intercept. In more complicated models, R assumes the
existence of an intercept so you might think that specifying this 1 is redundant. But R does not seem
to like a model without anything on the right of the tilde.



3.2 TWO SAMPLES 13

3.2 Two samples

For two samples, x should be a categorical variable with only two categories, specified by using
x = factor(x)

To follow the discussion in Chapter 4 of the book, I recommend fitting the model
y ˜ x - 1

The - 1 in the model tells it not to fit an intercept, so that the parameter estimates become the
group sample means. You should compare this output to that obtained by fitting
y ˜ x

in which the parameter estimates are one group sample mean and the difference between the sample
means of the two groups.

It turns out that if all you want is a test of whether the group means are equal and if the two
categories are coded as numbers, you do not need to specify that x defines categories. The usual
summary output for fitting
y ˜ x

still gives the test of whether the groups differ. This trick does not work if there are more than two
categories!

Chapter 4 of the book also considers some extensions, i.e., paired comparisons and unequal
variances. The lm command assumes equal variances, so it does not apply to the latter. As discussed
in the next chapter, paired comparisons can be treated as either one-sample that consists of the
differences between the pairs or as a two-way ANOVA without interaction.

3.3 Regression

In regression we assume that the vector x contains only measurement variables. In R, this is the
default.

3.3.1 Simple linear regression

With a single predictor x, simple linear regression is

m(x) = β0 +β1x

or
yh = β0 +β1xh + εh, h = 1, . . . ,n.

It is modeled in R as
y ˜ x

Notice that the intercept term is not specified and that this has the same structure as models used for
two samples. The key point is that x is a measurement variable not a categorical variable. We will
see later that this same R structure is used for one-way ANOVA when x is a factor variable with
more than two categories.

If we wanted to force the regression through the origin the model becomes

yh = β1xh + εh, h = 1, . . . ,n.

and is modeled in R as
y ˜ x - 1.

The model in question does not contain an intercept and the - 1 is used to stop an intercept being
fitted.

When x is a measurement variable, the two models



14 3. DEFINING LINEAR MODELS

y ˜ x - 1
y ˜ x

are different models. It turns out that if x is a categorical variable,

y ˜ x - 1
y ˜ x

are equivalent models.
Incidentally, it is possible to subtract terms other than the intercept from models in R. However,

until we introduce R conventions that automatically generate model terms, some of which we might
not want, there is no point in adding a model term just to demonstrate that we can subtract it out
again.

3.3.2 Polynomial regression

A cubic polynomial model

m(x) = β0 +β1x+β2x2 +β3x3

or

yh = β0 +β1xh +β2x2
h +β3x3

h + εh, h = 1, . . . ,n,

is modeled in R as

y ˜ x + I(xˆ2) + I(xˆ3)

Notice that the intercept term is not specified. Another way we could do this would be

x2 = x*x
x3 = x2*x
y ˜ x + x2 + x3

One advantage of the former over the later is that to make predictions, the first form only requires
us to specify the new value of x, whereas the second makes us specify all of x, x2, and x3.

Finally, R also has an option for fitting orthogonal polynomials of various degrees,

y ˜ poly(x, degree = 3))

cf, Section 12.5. Fitting regular (nonorthogonal) polynomials is also an option,

y ˜ poly(x, degree = 3, raw=TRUE)}

3.3.3 Multiple regression

Now suppose x is a vector of measurement variables with p = 3, i.e., x = (x1,x2,x3)
′. The multiple

regression model is

m(x) = β0 +β1x1 +β2x2 +β3x3

or

yh = β0 +β1xh1 +β2xh2 +β3xh3 + εh, h = 1, . . . ,n.

Typically, when programming it is safer not to define variables using subscripts, so we write x j as
xj and the model is written in R as

y ˜ x1 + x2 + x3

Notice that the intercept term is not specified.



3.4 ANOVA 15

3.3.4 Offsets

Suppose in the multiple regression model we knew that β2 = 5 so that the model becomes

yh = β0 +β1xh1 +5xh2 +β3xh3 + εh, h = 1, . . . ,n.

This can be modeled in R as
y ˜ x1 + offset(5*x2) + x3

For a linear model like this, we can rewrite the linear model as

yh −5xh2 = β0 +β1xh1 +β3xh3 + εh, h = 1, . . . ,n.

which can be modeled in R as
(y - 5*x2) ˜ x1 + x3

Both of these techniques work for linear models. For nonlinear “generalized linear models,”
such as those treated near the end of the book, one must use the “offset” command.

3.4 ANOVA

We begin by assuming that x is a single category variable and then move on to vectors of category
variables. If x is numerical, by default R assumes that x is a measurement variable, so we have to
specify that x is categorical. When x is a vector, we have to specify that each numerical variable in
the vector is categorical.

3.4.1 One-way ANOVA

A typical one-way ANOVA model is written

yi j = µi + εi j, i = 1,2, . . . ,a, j = 1, . . . ,Ni.

In this context, the generic predictor variable x should really be thought of as i, the subscript in the
model that identifies the groups. To specify that x is categorical, write
x = factor(x)

But just to avoid any possible confusion, I prefer to define a new version of x that is categorical,
xx = factor(x)

(In some contexts we might want to go back and forth between thinking of x as measurement or
categorical in which case it is handy to have both versions.) The model is then specified as
y ˜ xx - 1

The model in question does not contain an intercept with the - 1 used to stop an intercept from
being fitted.

An alternative form of the one-way model that contains a grand mean (intercept) is what most
programs are designed to fit,

yi j = µ +αi + εi j, i = 1,2, . . . ,a, j = 1, . . . ,Ni.

The model is written as
y ˜ xx

For estimation R uses the side condition α1 = 0 which forces the estimate of µ to be the sample
mean of group 1 and the estimate of α j to be the difference between the sample mean of group j
and the sample mean of group 1. As discussed in the book, other programs use other side conditions
and it is important to be able to interpret the different output.

The one-way ANOVA with a = 2 model is identical to the model for two independent samples
with equal variances and the model specification in R is the same.



16 3. DEFINING LINEAR MODELS

3.4.2 Two-way ANOVA

Now suppose x is a vector of factor variables with p = 2, i.e., x = (x1,x2)
′. As illustrated earlier,

rewrite x j as xj. Because x1 and x2 are factor variables, we specify

ii=factor(x1)
jj=factor(x2)

throughout this entire subsection.

3.4.2.1 Interaction

The model

yi jk = µi j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j,

is written in R as

y ˜ ii : jj - 1

Remember that this is essentially a one-way ANOVA model!
Alternatively, the equivalent interaction model can be written

yi jk = µ +αi +η j +(αη)i j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j.

and written in R as

y ˜ ii + jj + ii:jj

R, like many programs, has a shorter way to specify the model,

y ˜ ii * jj

When estimating parameters for this overspecified model, the following side conditions are used by
R,

α1 = 0; η1 = 0; (αη)1 j = 0, j = 1, . . . ,b; (αη)i1 = 0 i = 1, . . . ,a.

3.4.2.2 Additive effects

The additive effects model is

yi jk = µ +αi +η j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j.

and is written in R as

y ˜ ii + jj

When estimating parameters, the following side conditions are used by R,

α1 = 0; η1 = 0.

We mentioned earlier that we can also subtract effects. For example, to get the additive model
we could specify the interaction model and then remove the interaction term,

y ˜ ii * jj - ii:jj

Similar models hold for p > 2 but get exponentially more complicated. The book examines in
detail some cases with p = 3 and p = 4. Section 8 below also contains some discussion of higher-
order models.



3.4 ANOVA 17

3.4.2.3 Sequential fitting

As discussed in the book, although the models themselves are equivalent, some computer output
changes depending on whether one specifies the model

y ˜ ii + jj + ii:jj

or

y ˜ jj + ii + jj:ii

For example, to see different output try fitting, for some unbalanced data,

fit1 <- lm(y ˜ ii + jj + ii:jj)
summary(fit1)
anova(fit1)
fit2 <- lm(y ˜ jj + ii + jj:ii)
summary(fit2)
anova(fit2)

Although the end models are the same, the process of getting to the end model is different and the
anova output contains information from the process in addition to information from the end result.
For unbalanced data, you typically get different numbers from the anova command. For balanced
data, only the order of presentation changes. Parameter estimation from summary depends only on
the end model and does not change materially with different orderings of terms. In particular, when
you ask R to fit

y ˜ ii + jj + ii:jj

it sequentially fits the models

y ˜ ii
y ˜ ii + jj
y ˜ ii + jj + ii:jj

R fits a sequence of models determined by the order in which you added terms of the larger model!
Incidentally, it is irrelevant in these models whether you specify ii:jj or jj:ii. However,

the same is not true when using the * operator. In particular, ii + jj + ii:jj is equivalent to
ii*jj whereas jj + ii + jj:ii is equivalent to jj*ii.

Somewhat more obscurely, in R ii + jj + ii:jj is equivalent to ii:jj + ii + jj
whereas jj + ii + ii:jj is equivalent to ii:jj + jj + ii. My personal preference
would have been for R to treat, say, ii:jj + ii + jj as equivalent to ii:jj because fit-
ting an ii term after an ii:jj term actually contributes nothing. It seems that R is incorporating
a convention that they think people will like but one that is at odds with the mathematics of linear
model theory. Specifically, when you ask R to fit

y ˜ ii:jj + ii + jj

it sequentially fits the models

y ˜ ii
y ˜ ii + jj
y ˜ ii + jj + ii:jj

which is not the order of fitting that is suggested by the way in which terms were added to model.
Although this discussion has focused on the two-way with interaction model, issues of sequential

fitting are pervasive with unbalanced data (including regression). This is not so much a problem as
an opportunity. The extra computer output can save you from the chore of fitting some models. It
never does any harm unless you misinterpret the results.



18 3. DEFINING LINEAR MODELS

3.5 ACOVA and interaction

The following models were not discussed in Section 3.9 of the book but rather are discussed in
Chapter 15. They involve a category variable x1 written as x1 and a measurement variable x2 written
as x2 or equivalently as z (to make the notation more similar to the book). Throughout the section
we assume
ii = factor(x1)
z=x2

3.5.1 ACOVA: parallel lines

The ACOVA model is

yi j = µi + γzi j + εi j, i = 1,2, . . . ,a, j = 1, . . . ,Ni.

written in R as
y ˜ ii + z - 1

The a lines associated with the groups have intercepts µi and a common slope γ .
The alternative model

yi j = µ +αi + γzi j + εi j.

is written in R as
y ˜ ii + z

When estimating parameters, the side condition α1 = 0 is used by R so that µ is the intercept of the
line for the first group, αi is the intercept of the ith group minus the intercept of the first, in other
words, µ +αi is the intercept of the ith group, and again γ is the slope for all of the lines.

Note that this second R model is essentially the same form as that used for the two-way additive
effects model in Subsubsection 3.4.2.2 except now one of the predictor variables is a measurement
variable and the other is a factor variable.

3.5.2 Interaction: skew lines

We now consider ways of specifying lines for each group that can have different slopes as well as
different intercepts. The simplest model to interpret is

yi j = µi + γizi j + εi j.

In this model µi is the intercept and γi is the slope for the line associated with the i group. The model
in R is
y ˜ ii + ii:z - 1

The version most similar to generalizing the traditional ACOVA model is

yi j = µ +αi + γizi j + εi j

in which the line for the ith group has intercept µ +αi and slope γi. Written in R this model is
y ˜ ii + z:ii

and uses the side condition α1 = 0 for estimation. It does not matter if we write z:ii or ii:z.
Some folks like to specify a “hierarchical” version of the model (which I generally think is pretty

silly but admittedly gives some useful computer output),

yi j = µ +αi +β zi j + γizi j + εi j

written in R as



3.6 INTERACTION IN MULTIPLE REGRESSION 19

y ˜ ii + z + ii:z

or
y ˜ ii*z

For this model R uses α1 = 0 = γ1. More on hierarchical models in Section 7.

3.6 Interaction in multiple regression

The multiple regression model with p = 2 and continuous predictors x = (x1,x2) has

m(x) = β0 +β1x1 +β2x2

or
yh = β0 +β1xh1 +β2xh2 + εh, h = 1, . . . ,n.

This is an additive model in x1 and x2, cf. Section 9.9 of the book. The R model for this
y ˜ x1 + x2

is essentially the same as that used for the two-way ANOVA additive effects model and the parallel
lines ACOVA model except that now both of the predictor variables are measurement variables.
Moreover, the effects of the two predictors simply add together.

A useful way of incorporating some interaction into the model is to fit

m(x) = β0 +β1x1 +β2x2 +β3x1x2,

that is,
yh = β0 +β1xh1 +β2xh2 +β3xh1xh2 + εh, h = 1, . . . ,n.

This is no longer an additive model in the original variables x1 and x2 (although it is an additive
model in the variables x1, x2, x1x2). The main reason for introducing this model here is to illustrate
that the R model has essentially the same structure as the R models for two-way ANOVA with
interaction and the ACOVA interaction model with skew lines. The R command is
y ˜ x1 + x2 + x1:x2

or equivalently
y ˜ x1*x2
y ˜ (x1+x2)**2

With both variables being measurement variables there is yet another option for fitting the model
x1x2 <- x1*x2
y ˜ x1 + x2 + x1x2

3.7 Hierarchical and nested models

The model

yi jk = µ +αi +η j +(αη)i j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j.

is said to be hierarchical because the model includes not only the interaction terms (αη)i j but also
the lower order “main effect” terms αi and η j as well as the grand mean µ . A model is hierarchical
whenever a model that includes an mth order interaction between some variables also includes all of
the lower order interactions among those variables as well as all the main effects. Thus, if a model
contains (αηγ) terms, it must also include (αη) terms, (αγ) terms, (ηγ) terms, and the main effect
terms, the αs, ηs, and γs, as well as the grand mean µ . I have been at some pains in the book to
point out that all of these lower order terms are meaningless, so I have little regard for this concept
of a hierarchical model. (The term “hierarchical” takes on alternate meanings in alternate contexts,



20 3. DEFINING LINEAR MODELS

e.g., Bayesian statistics.) Some programs, like Minitab, insist that all models be hierarchical, using
a similar concept of hierarchy for measurement variables. We have already seen that R uses the *
operator to define hierarchical models. The model displayed earlier is most easily written as
y ˜ x1*x2

I should point out that when using the rather artificial (but computationally very convenient)
concept of interaction between continuous (measurement) variables, the lower order terms are NOT
meaningless.

If you care about hierarchical models, you might care about nested models which are models
that are not quite hierarchical. For example,

yi jk = µ +αi +(αη)i j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j

is said to have the (αη)i j effects nested within the αi effects. Again, fixed αi effects are irrelevant in
this model, so I find it hard to care about this concept of nesting. Nonetheless, R has specific code for
defining nested models. With x1=factor(x1) and x2=factor(x2), the model above could
be written
y ˜ x1/x2

which by definition is the same model as
y ˜ x1 + x1:x2

Moreover, using R’s operator for generating hierarchical models we can write the model as
y ˜ x1*x2 - x2

Yes, as indicated earlier, R lets you subtract just about any term from a model.

3.8 Higher-order models

When discussing R, we will consider “higher-order” models to be those that involve p > 2, although
the distinction is probably more common only when the number of factor variables is greater than
2. The reason we do this is because the methods in R for defining higher-order models are pretty
much interchangeable regardless of whether the predictors are measurements or factors. When used
on measurement variables, the R commands introduce interaction similar to Section 3.6 but do not
introduce polynomial (power) terms.

For example, the code
y ˜ (x1+x2+x3)ˆ2

introduces second order interactions among the predictor variables and thus is identical to both of
the models
y ˜ (x1+x2+x3)*(x1+x2+x3)
y ˜ x1*x2*x3 - x1:x2:x3

From the first two ways of writing the code you might be tempted to think that if all the predictors
are measurements the model is

yh =
2

∑
r=0

2

∑
s=0

2

∑
t=0

βrstxr
h1xs

h2xt
h3 + εh, h = 1, . . . ,n. (3.8.1)

It is not! The model is actually

yh = β000+β100xh1+β010xh2+β001xh3+β110xh1xh2+β101xh1xh3+β011xh2xh3+εh, h= 1, . . . ,n.

When all the predictors are factors with x1 ≡ i, x2 ≡ j, and x3 ≡ k the code means

yi jks = µ +αi +η j + γk +(αη)i j +(αγ)ik +(ηγ) jk + εi jks, s = 1, . . . ,Nhi j.



3.8 HIGHER-ORDER MODELS 21

If only x1 is a measurement variable, it means

y jks = µ +β1x jks1 +η j + γk +β1 jx jks1 +β1kx jks1 +(ηγ) jk + ε jks, s = 1, . . . ,N jk

If both x1 and x2 are measurement variables, it means

yks = β00 +β10xks1 +β01xks2 + γk +β11xks1xks2 +β10kxks1 +β01kxks2 + ε jks, s = 1, . . . ,Nk

The models
y ˜ (x1+x2+x3)ˆ3
y ˜ x1*x2*x3

are also identical.
To fit model (3.8.1) we can use the polynomial command

lm(y ˜ poly(x1, x2, x3, degree = 2, raw=TRUE))

To fit corresponding orthogonal polynomials, remove the raw specification.
Similarly, we can fit mth order interaction models, where m is a positive integer no greater than

p using, say, for p = 4,
y ˜ (x1+x2+x3+x4)ˆm

With p = 4, the all measurement variable model is not

yh =
m

∑
r=0

m

∑
s=0

m

∑
t=0

m

∑
u=0

βrstuxr
h1xs

h2xt
h3xu

h4 + εh, h = 1, . . . ,n.

The actual model for m = 3 and p = 4 has third order interactions and is

yh = yh = β000 +β1000xh1 +β0100xh2 +β0010xh3 +β0001xh4

+β1100xh1xh2 +β1010xh1xh3 +β1001xh1xh4 +β0110xh2xh3 +β0101xh2xh4 +β0011xh3xh4

+β1110xh1xh2xh3 +β1101xh1xh2xh4 +β1011xh1xh3xh4 +β0111xh2xh3xh4 + εh, h = 1, . . . ,n.

The ANOVA model that use all factors is

yhi jks = µ +αh +ηi + γ j +δk

+(αη)hi +(αγ)h j +(αδ )hk +(ηγδ )i j +(ηδ )ik +(γδ ) jk

+(αηγ)hi j +(αηδ )hik +(αγδ )h jk +(ηγδ )i jk + εhi jks, s = 1, . . . ,Nhi jk.

I will leave it to you to worry about the various kinds of ACOVA models that mix measurements
with factors.





Chapter 4

Two Samples

The command t.test performs most of the procedures discussed in Chapter 4. There are two
ways to specify the two samples of data. You can either have one vector for each sample, say y1 and
y2, or you can have one vector for all the data, say y, but also have an associated factor variable,
say x, that identifies the sample for each observation. To use lm to analyze the data, the (x,y) data
structure is needed.

4.1 Two correlated samples: paired comparisons

You need to know not only what sample an observation is in but also what pair it is in, so the (x,y)
data structure is awkward for these problems. Using the y1 and y2 data structure, the vectors will
have to have the same length and it is just assumed that the ith entry of y1 is paired with the ith entry
of y2. One way to test equality of means is to use

t.test(y1,y2,paired=TRUE)

For the data in the book use

hard <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab4-1.dat",
sep="",col.names=c("Pair","y1","y2"))

attach(hard)
hard
t.test(y1,y2,paired=TRUE,conf.level = 0.99)

Alternatively, you can fit a one-sample linear model to the differences between the pairs.

dr <- lm((y1-y2) ˜ 1)
drp=summary(dr)
drp
anova(dr)

This allows prediction of the difference in a new pair as demonstrated in Chapter 2 and also predic-
tions for new individual observations by treating the two samples separately as in Chapter 2.

Yet another way to use t.test on this problem is to compute the differences and then use
t.test as a one-sample procedure.

d = (y1-y2)
t.test(d)

In Section 17.4.1 of the book we mention that the paired comparison procedure is equivalent
to fitting a randomized complete block model. To do this we need not only the (x,y) data structure
but a third variable, say, z that identifies the pair. Both x and z need to be factor variables. Fit the
two-way ANOVA

dr <- lm(y ˜ x + z)
drp=summary(dr)
drp
anova(dr)

23



24 4. TWO SAMPLES

and look at the tests associated with z to establish differences between samples. For Shewhart’s
hardness data, I do not have a data file set up for this analysis.

4.2 Two independent samples with equal variances

Both data structures work fine for this problem, but if you have unequal group sizes with the (y1,y2)
structure you might need to fill out the group having a smaller sample size with missing data symbols
to make the data vectors the same length. Depending on your data structure, use one of the following
commands.

t.test(y1,y2,var.equal = TRUE)
t.test(y˜x,var.equal = TRUE)

Alternatively, with the (x,y) data structure you could use

fit <- lm(y ˜ x)
fitp=summary(fit)
fitp
anova(fit)

It turns out that to test equality of the group means, when fitting an intercept, if x is a categorical
variable with only two numerical categories you do not need to specify whether the variable is
measurement or category. However, if you do not specify that x is a category, the estimates that lm
gives you will depend on the way the categories have been coded—so if you want to do anything
other than just test that the mean difference is 0, you will need to get creative.

For the final point total data of the book and a data file with the (x,y) structure use

pts <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab4-2.dat",
sep="",col.names=c("x","y"))

attach(pts)
pts
summary(pts)
t.test(y ˜ x,var.equal = TRUE)

or use lm specifying x as a factor.

pts <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab4-2.dat",
sep="",col.names=c("x","y"))

attach(pts)
pts
xx = factor(x)
fin <- lm(y ˜ xx)
finp=summary(fin)
finp
anova(fin)

Compare this to the results obtained when using lm without specifying x as a factor.

pts <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab4-2.dat",
sep="",col.names=c("x","y"))

attach(pts)
pts
fin <- lm(y ˜ x)
finp=summary(fin)
finp
anova(fin)

Below we demonstrate the (y1,y2) data structure.



4.3 TWO INDEPENDENT SAMPLES WITH UNEQUAL VARIANCES 25

pts <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab4-2a.dat",
sep="",col.names=c("Obs","y1","y2"))

attach(pts)
pts
summary(pts)
t.test(y1,y2,var.equal = TRUE)

4.3 Two independent samples with unequal variances

Before using this procedure I urge you to read the discussion in the book that points out that testing
for equality of means with unequal variances is not nearly as informative as testing for equality of
means with equal variances. With equal variances and unequal means, one of the distributions is,
in a very useful sense, larger than the other one. Establishing that the means are different when the
variances are different may not tell you much that is useful.

As mentioned earlier, the lm command assumes equal variances so it is not applicable to these
data. (lm can only handle unequal variances if you know the relative sizes of all the variances, some-
thing that rarely happens.) To handle unequal variances we use t.test. The default two-sample
procedure in t.test has unequal variances, so one need not specify unequal variances. Depending on
how the data were entered, use one of

t.test(y1,y2)
t.test(y˜x)

The data file for the turtle data in the book has the (y1,y2) structure.

turt <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab4-3.dat",
sep="",col.names=c("Index","y1","y2"))

attach(turt)
turt
yy1=log(y1)
yy2=log(y2)
t.test(yy1,yy2)

This only does the α = 0.01 test from the book by giving a P value. The one-sample results are
performed as in Chapter 2.

4.4 Testing equality of the variances

The R command var.test provides an F test for the equality of two variances. For the turtle data
using the (y1,y2) data structure.

turt <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab4-3.dat",
sep="",col.names=c("y1","y2"))

attach(turt)
turt
summary(turt)
yy1=log(y1)
yy2=log(y2)
var.test(yy2, yy1)

To demonstrate the use of the (x,y) data structure we use the Final Points data

pts <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab4-2.dat",
sep="",col.names=c("x","y"))

attach(pts)
pts
xx = factor(x)



26 4. TWO SAMPLES

var.test(y˜xx)

although this analysis was not in the book.
More generally, the structure of this command is

var.test(y1, y2, ratio = 1,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, ...)

It can also be used to test whether the variances are the same in two completely different linear
models. Below we illustrated that capability but only by specifying a one-sample (intercept only)
model for each set of data.
var.test(lm(y1 ˜ 1), lm(y2 ˜ 1),conf.level = 0.95)



Chapter 5

Contingency Tables

If you are teaching a class on analyzing data, as opposed to a class on the use of linear models for
analyzing unbalanced data, you should do some count data early on—which is what the book does.

The data in this chapter can be analyzed with the log-linear models of Chapter 21 but that level
of sophistication seems premature. Therefore, we use specialized programs to look at these data,
rather than the generalization of lm that is the glm command. In particular we use two rather
similar commands: prop.test and chisq.test. The command prop.test only handles
binary outcomes and gives confidence intervals but not Pearson residuals. chisq.test handles
more general data, so does not give confidence intervals, but does give Pearson residuals.

The book does not discuss exact conditional tests (like Fisher’s exact test) but binom.test
makes such computations.

5.1 One binomial sample

The R code

prop.test(557,1835,correct=FALSE)

gives the confidence interval presented in the text. The R code for testing H0 : p = 1/3 at α = 0.01
is

prop.test(557,1835,p=.33333,conf.level = 0.99,correct=FALSE)

The code gives the P value for testing H0 : p = 1/3 and the 99% confidence interval, which de-
termines the α = 0.01 level test. Unfortunately, prop.test only provides the square of the test
statistic presented in the book.

5.1.1 Sign test

Obviously the whole point of the sign test is to turn a continuous data problem into a binomial
problem. So with a little manipulation you can use prop.test. A google search turned up the
fact that there is a package BSDA associated with a book by Larry Kitchens that includes a sign test
function.

5.2 Two independent binomial samples

The data file contains three columns: admissions, rejections, and the total number of applicants.
With this information, the simplest way to proceed is

berk <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab5-1.dat",
sep="",col.names=c("Admit","Reject","Total"))

attach(berk)
berk
prop.test(Admit,Total,correct=FALSE)

27



28 5. CONTINGENCY TABLES

The test statistic produced is the square of the test statistic in the book.
An alternative way to enter the data is to create a matrix of the admissions and rejections.

berk <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab5-1.dat",
sep="",col.names=c("Admit","Reject","Total"))

attach(berk)
berk
summary(berk)
AD <- matrix(c(Admit,Reject),ncol=2)
AD
prop.test(AD,correct=FALSE)

We could replace prop.test with chisq.test (using the same arguments) and get the same
test but slightly different output and options.

5.3 One multinomial sample

The following code gives the Pearson test, residuals, and null hypothesis expected values.

birth <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab5-2.dat",
sep="",col.names=c("Fem"))

attach(birth)
birth
J=(Fem+1-Fem) # J is a column of 1s
pp=J/12 # pp is a column of hypothesized probabilities for each month
fit <- chisq.test(Fem,p=pp,correct=FALSE)
fit
fit$expected
fit$residual
resid(fit)

This is not in any way binary data, so it is not surprising that I have not been able to get similar
results out of prop.test.

The following commands might be useful for performing one of the exercises in the book.

pp=c(31,28,31,30,31,30,31,31,30,31,30,31)
chisq.test(Fem,p=pp,correct=FALSE,rescale.p=TRUE)

5.4 Two independent multinomial samples

The command chisq.test allows us to enter a matrix with the female and male births. Since that
is precisely what is in the data file, we can read the data file (almost) directly into chisq.test.
The procedure provides access to Pearson residuals and estimated expected values, things that
prop.test does not give.

birth <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab5-3.dat",
sep="",col.names=c("F","M"))

attach(birth)
birth
fit <- chisq.test(birth,correct=FALSE)
fit
fit$expected
fit$residual

You get the same test statistic and P value if you replace chisq.test with prop.test. Even
though this is not binary data—12 categories, not 2 categories—the fact that we have exactly two
samples lets us use prop.test.



5.5 SEVERAL INDEPENDENT MULTINOMIAL SAMPLES 29

Instead of creating a matrix of the female and male births, using prop.testwe could compute
the total number of births and use that together with either the female or the male births.

birth <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab5-3.dat",
sep="",col.names=c("F","M"))

attach(birth)
birth
T <- F+M
prop.test(F,T,correct=FALSE)

Yet another way to enter the data is as a vector of birth counts with corresponding vectors that
specify the month of birth and the sex of the child. This is a very convenient way to specify the data
for using the modeling procedures in Chapter 21. To apply chisq.test, we first need to form a
table out of the data using xtabs. In fact, if all we want is the Pearson test, we do not need to run
chisq.test because xtabs will give the test as part of a summary. However, chisq.test
also gives Pearson residuals and estimated expected values.

birth <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab5-3a.dat",
sep="",col.names=c("O","Month","Sex"))

attach(birth)
birth
BR <- xtabs(O˜Month+Sex)
BR
summary(BR)
fit <- chisq.test(BR,correct=FALSE)
fit
fit$expected
fit$residual

5.5 Several independent multinomial samples

With the exception that prop.test no longer applies, this works pretty much as the previous
section worked except now the data matrix will have more than two columns. The data file contains
a list of counts along with indices for 4 occupations and 3 religions.

lazer <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab5-6.dat",
sep="",col.names=c("O","Rel","Occ"))

attach(lazer)
lazer
laz <- xtabs(O˜Rel+Occ)
laz
fit <- chisq.test(laz,correct=FALSE)
fit
fit$expected
fit$residual

If tab5-6a.dat existed (it does not) it would look just like Table 5.6 in the book, i.e., it would
have four columns of numbers that we would label A, B, C, D and three rows of numbers, one for
each religion. Such a data file could be read directly into chisq.test.

lazer <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab5-6a.dat",
sep="",col.names=c("A","B","C","D"))

attach(lazer)
lazer
fit <- chisq.test(lazer,correct=FALSE)
fit



30 5. CONTINGENCY TABLES

fit$expected
fit$residual

5.6 Lancaster–Irwin partitioning

To perform Lancaster-Irwin partitioning, you “need” to manipulate the data to create appropriate
subtables. You can do that in your favorite editor. I might mention that in Chapter 21 we discuss
performing Lancaster-Irwin partitioning by manipulating the subscripts used to define log-linear
models.



Chapter 6

Simple Linear Regression

Chapter 6 of the book introduces the theory and applications of simple linear regression along with
two “special cases.” The first special case has been alluded to earlier, the fact that in a two-sample
test (cf. Chapter 4) you do not need to specify that the predictor variable is a factor in order to get the
test for no differences between groups. The second “special case” is actually the generalization to
multiple regression. We introduce multiple regression early so that we can exploit its mathematics
and computing to look at models that treat the one variable used in simple linear regression in more
sophisticated ways. Later, in Chapter 9, we begin a fuller treatment of multiple regression per se.
For R commands on the special cases, see Chapters 4 and 9.

The following R script will give you most of what you need for simple linear regression. Indeed,
with minor modifications it will give you most of the inferential statistics that you will need for
fitting any linear model.

# Read the data
coleman.slr <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab6-1.dat",

sep="",col.names=c("School","x","y"))
attach(coleman.slr)
coleman.slr
#summary(coleman.slr)

# Table of coefficients and ANOVA table
cr <- lm(y ˜ x)
crp=summary(cr)
crp
anova(cr)

# Confidence intervals
confint(cr, level=0.95)

# Line estimation and prediction at x=-16.04
new = data.frame(x=c(-16.04))
predict(cr,new,se.fit=T,interval="confidence")
predict(lm(y˜x),new,interval="prediction")
# "cr" and "lm(y˜x)" are interchangeable here.

The vast majority of the analyses we will run in this book can be computed by changing the (two
lines of the) read.table command to enter the appropriate data and changing the

cr <- lm(y ˜ x)

command to allow for fitting an appropriate model. The new object in the predict command also
requires modification.

For simple linear regression, another useful tool is to plot the data with the fitted line superim-
posed.

31



32 6. SIMPLE LINEAR REGRESSION

plot(x,y)
abline(cr)

The next script produces items discussed in Chapter 7. The material is integral to any good data
analysis, so I consider it useful to keep all of the commands in close proximity. As with the earlier
commands, they should work for any linear model. (We frequently change the name of the lm output
which requires corresponding changes in this code.) The script is repeated in the next chapter. The
Chapter 7 material includes the production of four plots. If you run all of the plot commands at
once, you will only see the last one, so the plots need to be run one at a time. It is possible to get
them all to print out at once, and we also illustrate that. But if you run them all at once, the plots are
much smaller.

# Read the data and run
cr <- lm(y ˜ x)
crp=summary(cr)
# The code incorporates the names "cr" and "crp".

# Create a table of diagnostic statistics
infv = c(y,cr$fit,hatvalues(cr),rstandard(cr),

rstudent(cr),cooks.distance(cr))
inf=matrix(infv,I(crp$df[1]+crp$df[2]),6,dimnames = list(NULL,

c("y", "yhat", "lev","r","t","C")))
inf
# Note: The computation assumes NO missing observations

# Normal and two residual plots:
# Run one plot at a time unless you know how to make matrix plots
qqnorm(rstandard(cr),ylab="Standardized residuals")

plot(cr$fit,rstandard(cr),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")
plot(x,rstandard(cr),xlab="x",ylab="Standardized residuals",
main="Residual-Socio plot")

#leverage plot
Leverage=hatvalues(cr)
plot(School,Leverage,main="School-Leverage plot")

# Shapiro-Francia Statistic
rankit=qnorm(ppoints(rstandard(cr),a=I(3/8)))
ys=sort(rstandard(cr))
Wprime=(cor(rankit,ys))**2
Wprime

Or, for Shapiro-Francia, if you have installed the package nortest as in Subsection 2.5.1, use

library(nortest)
sf.test(rstandard(cr))

If you want to produce all four plots at once, use the following code to produce a 2× 2 matrix
of plots.

par(mfrow=c(2,2))
qqnorm(rstandard(cr),ylab="Standardized residuals")
plot(cr$fit,rstandard(cr),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")



6.6 AN ALTERNATIVE MODEL 33

plot(x,rstandard(cr),xlab="x",ylab="Standardized residuals",
main="Residual-Socio plot")
Leverage=hatvalues(cr)
plot(School,Leverage,main="School-Leverage plot")

Once you run par(mfrow=c(2,2)), any plots you produce will appear in this matrix form. To
stop this, run par(mfrow=c(1,1)).

6.6 An alternative model

To create the alternative model read in the data and run
xc = x - mean(x)
cr <- lm(y ˜ xc)
crp=summary(cr)
crp
anova(cr)

6.7 Correlation

We have already used the correlation command in R to obtain the Shapiro-Francia statistic. The
command for computing the correlation between x and y is simply, cor(x,y).

6.8 Two-sample problems

See Chapter 4.

6.9 Multiple Regression

See Chapter 9





Chapter 7

Model Checking

7.1 Recognizing randomness

The only computing was in producing plots. All of that information is elsewhere on my webpage.

7.2 Checking Assumptions

In addition to what is in ANREG, the package library(lmtest) includes versions of the
Durbin-Watson test for serial correlation and the Breusch-Pagan/Cook-Weisberg test for hetero-
geneity. See PA-V, Chapter 12 (Chapter 13 in older editions) for discussion of these tests.

7.2.1 Another example: Hooker data

This is a second example of a simple linear regression, one in which the model does not fit the data.
It is used to illustrate model checking devices. The following code is pretty much the same as that
for the Coleman report data of the previous chapter with a few names changed.

hook <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab7-1.dat",
sep="",col.names=c("Case","Temp","Pres"))
attach(hook)
hook

hk <- lm(Pres ˜ Temp)
hkp=summary(hk)
hkp
anova(hk)

confint(hk, level=0.95)

#ploting data with fitted line
plot(Temp,Pres)
abline(hk) # Or abline(hk$coef)

infv = c(y,hk$fit,hatvalues(hk),rstandard(hk),rstudent(hk),
cooks.distance(hk))

inf=matrix(infv,I(hkp$df[1]+hkp$df[2]),6,dimnames = list(NULL,
c("y", "yhat", "lev","r","t","C")))

inf

qqnorm(rstandard(hk),ylab="Standardized residuals")
plot(hk$fit,rstandard(hk),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")

35



36 7. MODEL CHECKING

plot(x,rstandard(hk),xlab="Temp",
ylab="Standardized residuals",main="Residual-Temp plot")

Case=seq(1:hkp$df[1]+hkp$df[2])
Leverage=hatvalues(hk)
plot(Case,Leverage,main="Case-Leverage plot")

# Wilk-Francia
rankit=qnorm(ppoints(rstandard(hk),a=I(3/8)))
ys=sort(rstandard(hk))
Wprime=(cor(rankit,ys))**2
Wprime

7.2.2 Outliers: Coleman data

The code was given in the previous subsection. Probabilites and percentiles (quantiles) of t distri-
butions were discussed in Chapter 2. That is what is needed to perform the Bonferonni method. The
cars package has automated the process with outlierTest(fit)

7.2.3 Effects of high leverage

I leave this to you.

7.3 Transformations

7.3.1 Circle of transformations

Code for transformations has been discussed in Chapters 1 and 2. To fit the log transformed hooker
data, use
hook <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab7-1.dat",
sep="",col.names=c("Case","Temp","Pres"))
attach(hook)
hook
LPres = log(Pres)
hk <- lm(LPres ˜ Temp)
hkp=summary(hk)
hkp
anova(hk)

and then proceed as in Subsection 7.2.1.

7.3.2 Box-Cox transformations

For the Hooker data, pick, say, λ = 0.5.
y=Pres
lambda = .5
ytilde = exp(mean(log(y))) #Geometric mean
zlambda = log(y) * ytilde
# The next line should only take effect if lambda is not equal to 0
# But it does not seem to
# Comment it out if you want to have lambda=0
zlambda = (yˆlambda - 1)/(lambda*(ytildeˆ(lambda-1)))[lambda != 0]
hklambda <- lm(zlambda ˜ Temp)



7.4 EXTRAS 37

hklambdap=summary(hklambda)
hklambdap
anova(hklambda)

Do this for λ = 0.5,1/3,0.25,0,−0.25,−0.5.
I have yet to actually run these programs. Both of the packages MASS and car have auto-

mated this procedure with boxcox and boxCox, respectively. According to the website Inside-R,
the car “routine is an elaboration of the boxcox function in the MASS package.” I haven’t tried
these out.

boxcox(model-or-fit,plotit=T)
boxcox(g,plotit=T,lambda=seq(-0.5,1.5,by=0.1))

7.3.3 Constructed variables

To check if Hooker’s dependent variable needs transforming.

y = Pres
hk <- lm(y ˜ Temp)
hkp=summary(hk)
hkp
anova(hk)

Lytilde = mean(log(y)) #Log of the geometric mean
w = y * (log(y)-Lytilde-1)
hkw <- lm(y ˜ Temp + w)
summary(hkw)

wtilde = hk$fit * log(hk$fit)
hkwtilde <- lm(y ˜ Temp + wtilde)
summary(hkwtilde
)

yhatsq = hk$fitˆ2
hkTukey <- lm(y ˜ Temp + yhatsq)
summary(hkTukey)

To check if Hooker’s predictor variable needs transforming, the Box-Tidwell procedure uses

y = Pres
x = Temp
xLx = x * log(x)
hkBT <- lm(y ˜ x + xLx)
summary(hkBT)

7.4 Extras

I have not really checked these out.
In the previous chapter I included the diagnostic methods that I find most useful. Not surpris-

ingly, R contains a variety of other methods that are preprogrammed, a few of which I will mention
before going back to the specifics of the book.

fit <- lm(y ˜ x)
# diagnostic plots
layout(matrix(c(1,2,3,4),2,2)) # optional 4 graphs/page
plot(fit)



38 7. MODEL CHECKING

influence(fit) # regression diagnostics

# If you have not done so already, run: install.packages("car")
library(car) # Companion to Applied Regression by Fox and Weisberg

outlierTest(fit) # Bonferonni p-value for most extreme obs
qqPlot(fit, main="QQ Plot") #qq plot for studentized resid
leveragePlots(fit) # leverage plots

# Influential Observations
# added variable plots
avPlots(fit)
# Cook’s D plot
# identify D values > 4/(n-k-1)
cutoff <- 4/((nrow(mtcars)-length(fit$coefficients)-2))
plot(fit, which=4, cook.levels=cutoff)
# Influence Plot
influencePlot(fit, id.method="identify", main="Influence Plot",
sub="Circle size is proportial to Cook’s Distance" )

ncvTest(fit)
# plot studentized residuals vs. fitted values
spreadLevelPlot(fit)

crPlots(fit)
# Ceres plots
ceresPlots(fit)
boxCox
boxTidwell



Chapter 8

Lack of Fit and Nonparametric Regression

8.1 Polynomial regression

Fit the fifth degree polynomial to the Hooker data.

hook <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab7-1.dat",
sep="",col.names=c("Case","Temp","Pres"))
attach(hook)
hook
summary(hook)
# Fit model (8.1.2)
x=Temp-mean(Temp)
x2=x*x
x3=x2*x
x4=x2*x2
x5=x3*x2
hk8 <- lm(Pres ˜ x+x2+x3+x4+x5)
summary(hk8)
anova(hk8)

To get the lack-or-fit test, add

hk4 <- lm(Pres ˜ x)
anova(hk4,hk8)

An alternative form of programming the polynomial model is

Pres ˜ poly(Temp, degree = 5, raw=TRUE)}.

Yet another form, that makes prediction easy, is

hkp <- lm(Pres ˜ Temp + I(Tempˆ2) + I(Tempˆ3) + I(Tempˆ4) + I(Tempˆ5))
hkpp <- summary(hkp)
hkpp
anova(hkp)

With this form, to make predictions one need only specify Temp, not all the powers of Temp.
Some computer programs don’t like fitting the fifth degree polynomial on these data because the

correlations are too high among the predictor variables. R is fine with it. If the correlations are too
high, the first thing to do would be to subtract from the predictor variable its mean, e.g., replace x
with x - mean(x), prior to specifying the polynomial. If the correlations are still too high, you
need to use orthogonal polynomials.

8.1.1 Picking a polynomial

The following list of commands (in addition to reading the data and defining the predictors as done
earlier) give everything discussed in this subsection.

39



40 8. LACK OF FIT AND NONPARAMETRIC REGRESSION

hk8 <- lm(Pres ˜ x+x2+x3+x4+x5)
anova(hk8)
hk7 <- lm(Pres ˜ x+x2+x3+x4)
summary(hk7)
anova(hk7,hk8)

While you already have everything for this subsection, you could finish fitting the entire hierar-
chy and ask to test them all.

hk6 <- lm(Pres ˜ x+x2+x3)
hk5 <- lm(Pres ˜ x+x2)
hk4 <- lm(Pres ˜ x)
hk3 <- lm(Pres ˜ 1)
anova(hk3,hk4,hk5,hk6,hk7,hk8)

8.1.1.1 Orthogonal Polynomials

Orthogonal polynomials provide a way of getting the information for picking a polynomial in the
form of useful t tests for all coefficients. Compare these results with our sequential fitting results. In
particular, square the t tests and compare them to our F tests.

To fit orthogonal polynomials use

hko <- lm(Pres ˜ poly(Temp, degree = 5))
summary(hko)
anova(hko)

The t tests from the orthogonal polynomials should be equivalent to the F tests given the command
anova(hk3,hk4,hk5,hk6,hk7,hk8).

8.1.2 Exploring the chosen polynomial

These are just the standard regression commands from Chapters 6 and 7 applied to the quadratic
model.

hk <- lm(Pres ˜ Temp + I(Tempˆ2))
hkp=summary(hk)
hkp
anova(hk)

# Diagonstic table (not given in book)
infv = c(Pres,hk$fit,hatvalues(hk),rstandard(hk),rstudent(hk),

cooks.distance(hk))
inf=matrix(infv,I(hkp$df[1]+hkp$df[2]),6,dimnames = list(NULL,

c("y", "yhat", "lev","r","t","C")))
inf

#Plots
plot(hk$fit,rstandard(hk),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")
qqnorm(rstandard(hk),ylab="Standardized residuals")
# Wilk-Francia
rankit=qnorm(ppoints(rstandard(hk),a=I(3/8)))
ys=sort(rstandard(hk))
Wprime=(cor(rankit,ys))**2
Wprime



8.2 POLYNOMIAL REGRESSION AND LEVERAGES 41

# More plots not given in book
plot(Temp,rstandard(hk),xlab="Temp",
ylab="Standardized residuals",main="Residual-Temp plot")
Leverage=hatvalues(hk)
plot(Case,Leverage,main="Case-Leverage plot")

#Predictions: Note that with this model specification, only define Temp
new = data.frame(Temp=205)
predict(hk,new,se.fit=T,interval="confidence")
predict(hk,new,se.fit=T,interval="prediction")

#Lack-or-fit test, using output from previous subsection.
anova(hk5,hk8) #Could also use anova(hk,hk8)

8.2 Polynomial regression and leverages

There are no new computing skills involved in this section.

8.3 Other basis functions

Most families of basis functions are defined on the unit interval. For the Hooker data we normal-
ize the temperatures by subtracting the minimum value and dividing by the range to define a new
predictor variable x.

hook <- read.table("c:\\E-drive\\Books\\ANREG2\\newdata\\tab7-1.dat",
sep="",col.names=c("Case","Temp","Pres"))
attach(hook)
hook
summary(hook)
#LPres=log(Pres)
range=30.5
min=180.5
x=(Temp-min)/range # More generally x=(Temp-min(Temp))/range(Temp)

Although nonlinear, the Hooker data is pretty straight so we only use four basis functions

8.3.1 Sines and cosines

hk <- lm(Pres ˜ Temp)
c1=cos(pi*1*x)
c2=cos(pi*2*x)
c3=cos(pi*3*x)
c4=cos(pi*4*x)
s1=sin(pi*1*x)
s2=sin(pi*2*x)
hook.sc <- lm(Pres ˜ Temp + c1 + s1 + c2 + s2)
summary(hook.sc)
anova(hk,hook.sc)
hook.cos <- lm(Pres ˜ Temp + c1 + c2 + c3 + c4)
summary(hook.cos)
anova(hk,hook.cos)



42 8. LACK OF FIT AND NONPARAMETRIC REGRESSION

8.3.2 Haar wavelets

h1=1*as.logical(x<.25)
h2=1*as.logical(x>=.25 & x<.5)
h3=1*as.logical(x>=.5 & x<.75)
h4=1*as.logical(x>=.75)
hook.haar <- lm(Pres ˜ Temp + h1 + h2 + h3 + h4)
summary(hook.haar)
hk <- lm(Pres ˜ Temp)
anova(hk,hook.haar)

8.4 Partitioning methods

We give several methods of accomplishing the same thing. What is probably the best is saved for
last.
hook <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab7-1.dat",
sep="",col.names=c("Case","Temp","Pres"))
attach(hook)
hook
summary(hook)

#Fit the two lines separately
hkl <- lm(Pres[Temp<191] ˜ Temp[Temp<191])
summary(hkl)
anova(hkl)
hkh <- lm(Pres[Temp>=191] ˜ Temp[Temp>=191])
summary(hkh)
anova(hkh)

#Fit the two lines at once
x=Temp
h <- Temp>=191 # h is an indicator of the temp being 191 or more
h2=1-h
x1=x*h
x2=x-x1
hkpt <- lm(Pres ˜ h2+x2+h+x1-1)
hkpart=summary(hkpt)
hkpart

#Fit the two lines at once with low group as baseline
hkpt2 <- lm(Pres ˜ x+h+x1)
hkpart2=summary(hkpt2)
hkpart2

#Fit two lines at once, Minitab-like
h3=h2-h
x3=x*h3
hkpt4 <- lm(Pres ˜ x+h3+x3)
hkpart4=summary(hkpt4)
hkpart4

If you want to partition into 2 or more groups, the following is probably the easiest. Create a
variable h that identifies the groups



8.4 PARTITIONING METHODS 43

hfac=factor(h)
hkpt3 <- lm(Pres ˜ Temp + hfac + hfac:Temp)
hkpart3=summary(hkpt3)
hkpart3
anova(hkpt3)

In terms of sequential fitting, this fits the single line first and then fits lines to each partition set, so
the sequential sums of squares for hfac and hfac:Temp go into the numerator of the F test.

If you have a more general model that also includes predictors x1 and x2, you have a couple of
choices. Either you can test for nonlinearity (i.e. lack of fit) in Temp, or you can test for lack of fit
(nonlinearity) in the entire model. To test for nonlinearity in just temperature,

hfac=factor(h)
hkpt3 <- lm(Pres ˜ x1 + x2 + Temp + hfac + hfac:Temp)
hkpart3=summary(hkpt3)
hkpart3
anova(hkpt3)

If you are doing this, you probably want the partition sets to only depend on Temp.
Alternatively, to test the entire model for lack of fit with an arbitrary collection of partition sets

indexed by h,

hfac=factor(h)
hkpt3 <- lm(Pres ˜ x1 + x2 + Temp + hfac + hfac:x1 + hfac:x2 + hfac:Temp)
hkpart3=summary(hkpt3)
hkpart3
anova(hkpt3)

Again, the sequential sums of squares are what you need to construct the F . Or you could get R to
give you the test with

hfac=factor(h)
hkpt4 <- lm(Pres ˜ x1 + x2 + Temp)
hkpt5 <- lm(Pres ˜ hfac + hfac:x1 + hfac:x2 + hfac:Temp - 1)
anova(hkpt4,hkpt5)

8.4.1 Utts’ method

It is possible to automate Utts’ procedure, particularly by fitting the linear model, say,

rm(list = ls())
hook <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab7-1.dat",
sep="",col.names=c("Case","Temp","Pres"))
attach(hook)
hook
summary(hook)
hk <- lm(Pres ˜ Temp)

and then defining an Utts subset of the data in terms of small values for hatvalues(hk), for
example,

k = .25
hkU <- lm(Pres[hatvalues(hk) < k] ˜ Temp[hatvalues(hk) < k])

However, to reproduce what is in the book you would need to figure out the appropriate k values to
obtain the 15 central points and the 6 central points. I created the subsets by manual inspection of
sort(hatvalues(hk)). The commands

k = .05
hkU15 <- lm(Pres[hatvalues(hk) < k] ˜ Temp[hatvalues(hk) < k])



44 8. LACK OF FIT AND NONPARAMETRIC REGRESSION

summary(hkU15)
k = .035
hkU6 <- lm(Pres[hatvalues(hk) < k] ˜ Temp[hatvalues(hk) < k])
summary(hkU6)

produced what I needed for the plots.
Assuming you know the number of data points in a regression n, Minitab would use k =

(1.1)*(n-df.residual(hk))/n. When the dependent variable y has no missing observa-
tions, n = length(y).

Below is the code for the two figures for this subsection.
#Utts1
xx=seq(185.6,197,.05)
yy1=-62.38+.42843*xx
plot(Temp,Pres,xlim=c(180.5,211),type="p")
lines(xx,yy1,type="l")

#Utts2
xx=seq(189.5,193.6,.05)
yy1=-48.123+.35398*xx
plot(Temp,Pres,xlim=c(180.5,211),type="p")
lines(xx,yy1,type="l")

The package library(lmtest) includes a version of Utts’ Rainbow Test.

8.5 Splines

You would probably not want to do an entire spline fit without specialized software such as
library(splines) and library(splines2). We begin illustrating computing the two
spline example from the book. We conclude with how to generalize that.
hook <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab7-1.dat",
sep="",col.names=c("Case","Temp","Pres"))
attach(hook)
hook

x=Temp
h <- Temp>=191
xsw = x*(1-h) + 191 * h # The w in xsw is for "weird".
xs=(x-191)*h

# Nonstandard model derived from fitting separate lines.
hkpt <- lm(Pres ˜ xsw+xs)
hkpart=summary(hkpt)
hkpart
anova(hkpt)

# Usual model derived from using first group as baseline.
hkpt2 <- lm(Pres ˜ x+xs)
hkpart2=summary(hkpt2)
hkpart2
anova(hkpt2)

#lack-or-fit test
hk <- lm(Pres ˜ x)



8.6 FISHER’S TEST 45

anova(hk,hkpt2) # or anova(hk,hkpt)

To fit more than one linear spline term, say two, create two variables: h1 that is 1 if you are
greater than the first knot k1 and 0 if you are less than the knot and also h2 being 1 if you are
greater than k2 and 0 if you are less than the knot.
hook <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab7-1.dat",
sep="",col.names=c("Case","Temp","Pres"))
attach(hook)
hook

k1=185
k2=195
x=Temp
h1 <- Temp>=k1
xs1=(x-k1)*h1
h2 <- Temp>=k2
xs2=(x-k2)*h2
hkp <- lm(Pres ˜ x+xs1+xs2)
hkpart=summary(hkpt2)
hkpart
anova(hkpt)

You should be able to fit a cubic spline with two interior knots using
hkp <- lm(Pres ˜ x+I(xˆ2)+I(xˆ3)+I(xs1ˆ3)+I(xs2ˆ3))

8.6 Fisher’s test

As is discussed in Chapter 12, this is just a test of the simple linear regression model against a
one-way ANOVA.
hook <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab7-1.dat",
sep="",col.names=c("Case","Temp","Pres"))
attach(hook)
hook

y=Pres
x=Temp
fit <- lm(y ˜ x)
grps = factor(x)
pe <- lm(Pres ˜ grps)
anova(fit,pe)

If you have multiple predictors, say, x1, x2, x3, the procedure becomes
fit <- lm(y ˜ x1+x2+x3)
xx1 = factor(x1)
xx2 = factor(x2)
xx3 = factor(x3)
pe <- lm(Pres ˜ xx1:xx2:xx3)
anova(fit,pe)

Haven’t run an example of the generalization.





Chapter 9

Multiple Regression and Diagnostics

As indicated before, the basic commands are extremely similar when moving from one measurement
predictor to several of them.

9.1 Basic commands

coleman <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",
sep="",col.names=c("School","x1","x2","x3","x4","x5","y"))
attach(coleman)
coleman

#Summary tables
co <- lm(y ˜ x1+x2+x3+x4+x5)
cop=summary(co)
cop
anova(co) # The default for anova is to give sequential sums of squares
# The following device nearly prints out the three line ANOVA table
# See Chapter 11 for details
Z <- model.matrix(co)[,-1]
co <- lm(y ˜ Z)
anova(co)

confint(co, level=0.95)

#Predictions
new = data.frame(x1=2.07, x2=9.99,x3=-16.04,x4= 21.6, x5=5.17)
predict(lm(y˜x1+x2+x3+x4+x5),new,se.fit=T,interval="confidence")
predict(lm(y˜x1+x2+x3+x4+x5),new,interval="prediction")

infv = c(y,co$fit,hatvalues(co),rstandard(co),rstudent(co),
cooks.distance(co))

inf=matrix(infv,I(cop$df[1]+cop$df[2]),6,dimnames = list(NULL,
c("y", "yhat", "lev","r","t","C")))

inf

qqnorm(rstandard(co),ylab="Standardized residuals")

# Wilk-Francia
rankit=qnorm(ppoints(rstandard(co),a=I(3/8)))
ys=sort(rstandard(co))

47



48 9. MULTIPLE REGRESSION AND DIAGNOSTICS

Wprime=(cor(rankit,ys))**2
Wprime

plot(co$fit,rstandard(co),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")

One of the first things we did in the chapter was print the correlations between y and the x js.
One can do that by running cor(y,xj) for j = 1, . . . ,5 but having created the model matrix Z,
we can get them all by running cor(y,Z). Similarly, the correlations given in Example 9.7.1 are
produced by cor(Z).

To delete cases 18 and 3 use the following code. Then rerun the earlier code except the diagnostic
table needs to be modified.

y[18]=NA
y[3]=NA

infv = c(co$fit,hatvalues(co),rstandard(co),rstudent(co),
cooks.distance(co))

inf=matrix(infv,I(cop$df[1]+cop$df[2]),5,dimnames = list(NULL,
c( "yhat", "lev","r","t","C")))

inf

In Section 9.3 of the book we do two specific model comparison F tests. They can be generated
using the following code.

cr <- lm(y ˜ x1+x2+x3+x4+x5)
summary(cr)
anova(cr)

cr34 <- lm(y ˜ x3+x4)
anova(cr34,cr)

cr134 <- lm(y ˜ x1+x3+x4)
anova(cr34,cr134)
anova(cr34,cr134,cr)

The last call of anova gives the alternate version of the F test.

9.8 More on model testing

rm(list = ls())
chap <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\chapman.dat",

sep="",col.names=c("Case","Ag","S","D","Ch","Ht","Wt","Coronary"))

attach(chap)
chap.mlr
#summary(chap)
ii=Case
x1=Ag
x2=S
x3=D
x4=Ch
x5=Ht
y=Wt



9.10 GENERALIZED ADDITIVE MODELS 49

#Model (9.8.1)
m1=lm(y˜x1+x2+x3+x4+x5)
summary(m1)
anova(m1)

#Model (9.8.2)
bsum=x2+x3
m2=lm(y˜x1+bsum+x4+x5)
summary(m2)
anova(m2)

#Model (9.8.3)
bdif=x2-x3
m3=lm(y˜x1+bdif+x4+x5)
summary(m3)
anova(m3)

#Model (9.8.4)
bsum=x2+x3
m4=lm(y˜offset(.5*x3) + x1+bsum+x4+x5)
summary(m4)
anova(m4)

#Model (9.8.5)
bsum=x2+x3
m5=lm((y-.5*x3) ˜ x1+bsum+x4+x5)
summary(m5)
anova(m5)

#Model (9.8.6)
m6=lm((y-3.5*x5) ˜ x1+x2+x3+x4)
summary(m6)
anova(m6)

#Model (9.8.7)
bsum=x2+x3
m7=lm((y-.5*x3-3.5*x5) ˜ x1+bsum+x4)
summary(m7)
anova(m7)

# or equivalently

m7=lm(y ˜ offset(.5*x3+3.5*x5) + x1+bsum+x4)
summary(m7)
anova(m7)

9.10 Generalized additive models

I have not really checked out any of the rest of this chapter. This first thing looks especially
questionable.



50 9. MULTIPLE REGRESSION AND DIAGNOSTICS

To fit the polynomial version of the book’s model (9.10.2)
lm(y ˜ poly(x1, degree = R, raw=TRUE) + poly(x2, degree = S, raw=TRUE))

To fit the polynomial version of the book’s model (9.10.3) when R = S

lm(y ˜ poly(x1, x2, degree = R, raw=TRUE))

Of course R and S need to be numbers, not just symbols.

9.10.1 Other useful tools?

plot(x3+x4˜y,data=colman)
plot(x˜y)
pairs(co)



Chapter 10

Diagnostics and Variable Selection

10.1 Diagnostics

Did it in the previous chapter.

10.2 Best subsets

To do a best subsect selection, start by running the full model.

rm(list = ls())
coleman <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",
sep="",col.names=c("School","x1","x2","x3","x4","x5","y"))
attach(coleman)
coleman

#Summary tables
co <- lm(y ˜ x1+x2+x3+x4+x5)
cop=summary(co)
cop
anova(co)

We will extract from this the model matrix in the next group of commands.
At some point you need to have run install.packages("leaps"). Then, to get the, say,

nb=3 best models for every number of predictors, run

# Best subset selection Table 10.11 in book.
library(leaps)
x <- model.matrix(co)[,-1]
# assign number of best models and number of predictor variables.
nb=3
xp=cop$df[1]-1
dfe=length(y)- 1- c(rep(1:(xp-1),each=nb),xp)
g <- regsubsets(x,y,nbest=nb)
gg = summary(g)
tt=c(gg$rsq,gg$adjr2,gg$cp,sqrt(gg$rss/dfe))
tt1=matrix(tt,nb*(xp-1)+1,4,
dimnames = list(NULL,c("R2", "AdjR2", "Cp", "RootMSE")))

Cp.tab=data.frame(tt1,gg$outmat)
Cp.tab

Construction of the table uses the previously generated output from co and cop. regsubsets
can also be used to perform stepwise regression as discussed in the next section. And stepwise
from the next section can be used to perform best subset selection.

If you want to force some variables into all regressions, which would be reasonable if they had
large t statistics in the full model, the following commands should work. You need to changenfix

51



52 10. DIAGNOSTICS AND VARIABLE SELECTION

to be the number of variables being forced in. As before you need to determine the number of best
models being fit, nb. regsubsets also needs you to specify the variables being forced in.

library(leaps)
x <- model.matrix(co)[,-1]
# assign number of best models and number of predictor variables.
nb=2
xp=cop$df[1]-1
nfix=2
dfe=length(y)- 1- nfix -c(rep((nfix+1):(xp-1),each=nb),xp)
g <- regsubsets(x,y,nbest=nb,force.in=c("x3","x4"))
gg = summary(g)
gg$outmat
tt=c(gg$rsq,gg$adjr2,gg$cp,sqrt(gg$rss/dfe))
tt1=matrix(tt,nb*(xp-nfix-1)+1,4,
dimnames = list(NULL,c("R2", "AdjR2", "Cp", "RootMSE")))

Cp.tab=data.frame(tt1,gg$outmat)
Cp.tab

10.3 Stepwise methods

The package StepReg has a program stepwise allows selection = "backward" or
"forward" or "bidirection". The α to enter is specified by sle = α and the α to delete a
term is specified by sls = α . It also allows searching for models with the lowest information cri-
terion. It acts on the columns of the model matrix, so may do strange things with ANOVA models.
Best subset selection is available using selection = score. I have not yet run stepwise.

R’s step command is useful in many places, not just with lm and is designed to give reasonable
answers even for ANOVA type models. It chooses models based on the AIC criterion. The 2020
edition of Plane Answers contains a discussion of AIC. A similar option is stepAIC from the
MASS library.

First we fit the full model and then request the stepwise procedure.

rm(list = ls())
coleman <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",
sep="",col.names=c("School","x1","x2","x3","x4","x5","y"))
attach(coleman)
coleman

#Summary tables
co <- lm(y ˜ x1+x2+x3+x4+x5)
cop=summary(co)
cop
anova(co)

# This is the default backward elimination procedure.
co1 <- step(co, direction="backward")
cop1=summary(co1)
cop1
anova(co1)

# Forward selection is a little more complicated.
null = lm(y˜1)



10.4 MODEL SELECTION AND CASE DELETION 53

step(null, scope=list(lower=null, upper=co),direction="forward")

Actual stepwise uses direction="both". There is an option test="F" to print out F statistics
but it seems that the procedure still stops based on minimizing AIC. You could perhaps adjust the
k= option to go past your stopping point and then use the F statistics to determine your stopping
point.

regsubsets from the previous section can also be used to perform stepwise regression. It
provides more options on rules for dropping and adding variables.

If you fit the full model to find MSE(F) then using scale=MSE(F) may cause use of the Cp
statistic. I haven’t tried this yet. Would also apply to dropterm and addterm.

I would guess that when sls is specified, telling it to use significance levels,select="SL",
would be redundant but I haven’t checked.

10.4 Model selection and case deletion

No new computing here.

10.5 Lasso

coleman <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",
sep="",col.names=c("School","x1","x2","x3","x4","x5","y"))
attach(coleman)
coleman
summary(coleman)

#Summary tables
co <- lm(y ˜ x1+x2+x3+x4+x5)
cop=summary(co)
cop
anova(co)

x <- model.matrix(co)[,-1]

#At some point you need to have run install.packages("lasso2")
library(lasso2)
tib <- l1ce(y ˜ x1+x2+x3+x4+x5,data=coleman,bound = 0.56348)
tib

tib <- l1ce(y ˜ x1+x2+x3+x4+x5,data=coleman,bound = 0.5+(seq(1:10)/100))
tib

It is most natural to apply the lasso (and ridge regression) to predictor variables that have been
standardized by subtracting their mean and dividing by their standard deviation. If we create a matrix
of the predictor variables, R has a command scale that does that.

coleman <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",
sep="",col.names=c("School","x1","x2","x3","x4","x5","y"))
attach(coleman)
coleman
X = coleman[,2:6]
Xs = scale(X)



54 10. DIAGNOSTICS AND VARIABLE SELECTION

Or you could do the same thing by brute force using the matrix commands of Chapter 11.
X=matrix(c(x1-mean(x1),x2-mean(x2),x3-mean(x3),x4-mean(x4),x5-mean(x5),ncol=5)
Xs = X %*% diag(c(sd(x1),sd(x2),sd(x3),sd(x4),sd(x5))ˆ(-1))
Xs

If you want, you could only center the variables or rescale them without centering them.
scale(coleman[,2:6], center = TRUE, scale = TRUE)

10.5.0.1 Pollution data

rm(list = ls())
coleman <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab9-4.dat",
sep="",col.names=c("x1","x2","x3","a1","x4","x5","x6","x7","x8","x9","a2","a3","a4","a5","x10","y"))

attach(coleman)
coleman
summary(coleman)

#Summary tables
co <- lm(y ˜ x1+x2+x3+x4+x5+x6+x7+x8+x9+x10)
cop=summary(co)
cop
anova(co)

x <- model.matrix(co)[,-1]

#At some point you need to have run install.packages("lasso2")
library(lasso2)

tib <- l1ce(y ˜ x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=coleman,standardize=FALSE,bound = (seq(1:15)/15))
tib

10.5.1 Cross-validation for tuning parameter

The following code originally written by my colleague Yan Lu includes options for cross-validatory
selection of the lasso bound. It uses the lars package.
##Lasso for coleman data
install.packages("lasso2")
install.packages("lars")
library(lasso2)
library(lars)

coleman<- read.table(file="C:\\E-drive\\Books\\ANREG2\\newdata\\TAB6-4.DAT",
sep="",col.names=c("School","x1","x2","x3","x4","x5","y"))

X <- as.matrix(coleman[,c(2,3,4,5,6)])
y<-coleman$y

# Run cross-validated lasso out of lars.
ans.cv <- cv.lars(X, y,type="lasso",K=10,index=seq(from = 0, to = 1, length =20))
# type=lasso is the default,
# index=seq(from = 0, to = 1, length =100) is the default
# K=10 K-fold cross validation is the default
# cv.lars produces the CV curve at each value of index



10.5 LASSO 55

seid0 <- order(ans.cv$cv)[1] #id number for the minumum CV MSE
lambdamin <- ans.cv$index[seid0] #find \lambda that is associated with minimum CV
lambdamin #0.6842
minPLUSoneSE <- ans.cv$cv[seid0] +ans.cv$cv.error[seid0] # one SE from the minimum CV value
abline(minPLUSoneSE,0,lty=2) #looks like \lambda=0.45 is within the one SE from the minimum CV
# last command adds a horizontal line to plot produced by cv.lars command

lasso3 <- l1ce(y˜x1+x2+x3+x4+x5, data=coleman, bound=lambdamin)
coef(lasso3)
#(Intercept) x1 x2 x3 x4 x5
#15.0571948207 -1.1061254764 0.0008558439 0.5357023738 0.8508239046 0.0000000000





Chapter 11

Multiple Regression: Matrix Formulation

In this chapter we use R’s matrix methods to produce results for multiple regression. At the end of
the chapter we explore principal component regression and also address the most complicated ideas
from Appendix A: eigenvalues and eigenvectors.

We produce the table of coefficients, the three line ANOVA table, and some diagnostic statistics.
The commands are divided into sections but the sections depend on results computed in previous
sections. The methods used here are not good computational procedures. Good programs for
regression, or more general linear models, use more sophisticated methods of computation.

To produce multiple regression results, we use a collection of matrix commands available in R.
# General matrix commands
X <- model.matrix(co) # Model matrix of fitted model "co"
Z <- model.matrix(co)[,-1] # Model matrix without intercept
t(X) # transpose of X
diag(v,nrow=length(v)) # diag. matrix from vector v
diag(A) # diag. vector from matrix A
sum(diag(A)) # trace of matrix A
%*% # matrix multiplication
solve(A,b) # solves A %*% x = b for x
solve(A) # matrix inverse of A
rowsum(X) # sum of rows for a matrix-like object
rowSums(X) # This is a faster version
colsum(X)
colSums(X)
rowMeans(X)
colMeans(X)
scale(X,center=TRUE,scale=TRUE) # subtract col means, divide by col std. dev
rankMatrix(X) # Compute r(X). Can be dicey.
outer(x,y) # outer product: xy’
inprod(x,y) # inner product: x’y

The first order of business is constructing the model matrix from the data read in and showing
that it is the same as that used by lm.
coleman <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",
sep="",col.names=c("School","x1","x2","x3","x4","x5","y"))
attach(coleman)
coleman

# Create J, a column of ones.
J=x1+1-x1
# Create the model matrix from variables read.
X=matrix(c(J,x1,x2,x3,x4,x5),ncol=6)
X

57



58 11. MULTIPLE REGRESSION: MATRIX FORMULATION

# Extract the model matrix from lm.
co <- lm(y ˜ x1+x2+x3+x4+x5)
XX=model.matrix(co)
XX

Note that X and XX are the same.
Now we compute the standard statistics. First we get the estimated regression parameters, then

fill out the ANOVA table, finally we get the standard errors and t statistics. In the process we find
the perpendicular projection operator (ppo) but in practice the ppo is an unwieldy creature to have
saved in a computer’s memory. For example, if n = 1000, M contains a million numbers.
# Find the vector of least squares estimates
Bhat=(solve(t(X)%*%X))%*%t(X)%*%y #library(MASS) has a more general method
Bhat # Bhat=(ginv(t(X)%*%X))%*%t(X)%*%y

#Find the perpendicular projection operator
M = X%*%solve(t(X)%*%X)%*%t(X) # M=X%*%(ginv(t(X)%*%X))%*%t(X)

# Compute the ANOVA table statistics.
yhat = M%*%y #This is more efficiently computed as X%*%Bhat
ehat = y - yhat
SSE = t(ehat)%*% ehat
n = length(y)
p = ncol(X) # p = rankMatrix(X)
dfE <- n - p #Computing the rank of a matrix can be dicey
MSE = SSE/dfE
MSE = as.numeric(MSE) #I got an error for Cov[Bhat] if I didn’t do this
SSReg = t(yhat)%*%yhat - n*mean(y)**2 # Or t(y)%*%yhat - n*mean(y)**2
dfReg = p-1
MSReg = SSReg/dfReg
SSTot = t(y)%*%y - n*mean(y)**2
dfTot = n-1
MSTot = SSTot/n-1
AOVTable = matrix(c(dfReg,dfE,dfTot,SSReg,SSE,SSTot,MSReg,MSE,MSTot),ncol=3)
AOVTable
co <- lm(y˜X[,-1])
anova(co)

For comparison I included commands to print (most of) a three line ANOVA table using R’s com-
mand anova. Normally anova does not print out a three line ANOVA table but it comes close if
you define the model using a matrix (without a column of 1s) instead of using the modeling options
discussed in Chapter 3.

Now construct the covariance matrix of β̂ and compare it to the one given by lm before using it
to obtain the standard errors and t statistics.
Cov = MSE*(solve(t(X)%*%X))
Cov
vcov(co) # lm’s covariance matrix for model parameters
SE = sqrt(diag(Cov))
TabCoef=matrix(c(Bhat,SE,Bhat/SE),ncol=3)
TabCoef
cop = summary(co)
cop

Again, for comparison, I included commands to print lm’s table of coefficients. I also needed to
save the summary of the fit because I use it in the next series of commands.



11.6 PRINCIPAL COMPONENT REGRESSION 59

The book discusses how to compute two of our standard diagnostic quantities: the leverages and
the standardized residuals. Christensen (2011, Chapter 13) discusses computing diagnostic statistics.
In particular, from the fit summary results “cop”, the leverages, and the standardized residuals we
can compute t residuals and Cook’s distance. The leverages are just the diagonal elements of the
ppo.
lev = diag(M) #Computing M just to get the diagonal elements is overkill
sr = ehat/sqrt(MSE*(1-lev)) #Standardized residuals
tresid=sr*sqrt((cop$df[2]-1)/(cop$df[2]-srˆ2)) # t residuals
C = srˆ2 *lev/(p*(1-lev)) #Cook’s distance
infhomemade=matrix(c(lev,sr,tresid,C),ncol=4)
infhomemade
infv = c(co$fit,hatvalues(co),rstandard(co),rstudent(co),

cooks.distance(co))
inf=matrix(infv,I(cop$df[1]+cop$df[2]),5,dimnames = list(NULL,

c( "yhat", "lev","r","t","C")))
inf

Again, for comparison, I have included our standard table of diagnostic values that lets lm do the
heavy lifting of computations.

11.6 Principal component regression

Principal component regression using prcomp. The following commands reproduce the results in
the book.
coleman <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",
sep="",col.names=c("School","x1","x2","x3","x4","x5","y"))
attach(coleman)
coleman

fit <- prcomp(˜ x1+x2+x3+x4+x5, scale=TRUE)
(fit$sdev)**2
summary(fit)
fit$rotation
co <- lm(y˜fit$x)
cop <- summary(co)
cop
anova(co)

The book also gives the regression coefficients based on PC1, PC3, PC4 transformed back to
the scale of the x js.
gam <- c(co$coef[2],0,co$coef[4],co$coef[5],0) #Zero coef.s for PC2 and PC5
int = mean(y)-(t(gam)%*% t(fit$rotation)) %*%(fit$center*((fit$scale)ˆ(-1)))
PCbeta =c(int,(t(gam)%*% t(fit$rotation))*((fit$scale)ˆ(-1)))
PCbeta

The is a section on eigenvalues and eigenvectors near the end of the book.





Chapter 12

One-Way ANOVA

This is pretty self-explanatory.

12.1 Suicide data

suic.aov <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab12-1.dat",
sep="",col.names=c("Age","group"))
attach(suic.aov)
suic.aov

#Summary tables
G=factor(group)
la=log(Age)
cr <- lm(Age ˜ G-1)
crp=summary(cr)
crp
anova(cr)

confint(cr, level=0.95)

infv = c(la,cr$fit,hatvalues(cr),rstandard(cr),rstudent(cr),
cooks.distance(cr))

inf=matrix(infv,I(crp$df[1]+crp$df[2]),6,dimnames = list(NULL,
c("y", "yhat", "lev","r","t","C")))

inf
# delete y from table if missing observations

qqnorm(rstandard(cr),ylab="Standardized residuals")

plot(cr$fit,rstandard(cr),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")

plot(group,rstandard(cr),xlab="Group",
ylab="Standardized residuals",main="Residual-Group plot")

# Wilk-Francia
rankit=qnorm(ppoints(rstandard(cr),a=I(3/8)))
ys=sort(rstandard(cr))
Wprime=(cor(rankit,ys))**2
Wprime

61



62 12. ONE-WAY ANOVA

12.2 Regression analysis of ANOVA data

suic <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab12-1.dat",
sep="",col.names=c("A","R"))
attach(suic)
suic
summary(suic)

#Summary tables
R=factor(R)
LA=log(A)
# Fit a one-way without a grand mean
sabc <- lm(LA ˜ R - 1)
coef=summary(sabc)
coef
anova(sabc)
sabc1 <- lm(LA ˜ R)
coef=summary(sabc)
coef
anova(sabc1)

# Two ways to make indicator variables.
# The follow works if codes in R are 1,2,3
r1 = gsub("[ˆ1]","0",R)
r2 = gsub("[ˆ2]","0",R)
r3 = gsub("[ˆ3]","0",R)
r1 = as.numeric(r1)
r2 = as.numeric(r2)/2
r3 = as.numeric(r3)/3
matrix(c(R,r1,r2,r3),ncol=4)
# Take indicators from model matrix
X = model.matrix(sabc)
r1 = x[,1]
r2 = x[,2]
r3 = x[,3]
matrix(c(R,r1,r2,r3),ncol=4)

The matrix commands simply allow one to see what has been created.

12.3 Modeling contrasts

mand <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab12-4.dat",
sep="",col.names=c("yy","C2","C3","C4","C5","C6","C7","C8","C9"))
attach(mand)
mand

ii = factor(C2)
y = log(yy)
fit <- lm(y ˜ ii)

C3 = factor(C3)
C4 = factor(C4)



12.4 ONE-WAY ANOVA AND POLYNOMIAL REGRESSION 63

C5 = factor(C5)
C6 = factor(C6)
C7 = factor(C7)
C8 = factor(C8)
C9 = factor(C9)

12.4 One-Way ANOVA and polynomial regression

asi <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab12-9.dat",
sep="",col.names=c("x","y"))

attach(asi)
asi

# Polynomial model
xc = x - mean(x)
xc2 = xc * xc
xc3 = xc2 * xc
xc4 = xc3 * xc
ft <- lm(y ˜ xc + xc2 + xc3 + xc4)
ftp=summary(ft)
ftp
anova(ft)

The summary(ft) command gives the table of coefficients presented in the book. The
anova(ft) command gives the sequential sums of squares F tests presented in Table 12.12 of
the book. How to construct Table 12.11 should be self-evident by now and is of secondary impor-
tance anyway.

An alternative way to construct the sequential tests is by using R’s capability for fitting orthog-
onal polynomials. We will not go into details but notice that the P values in the table of coefficients
summary(fto) below agree with the earlier P values from anova(ft).
fto <- lm(y ˜ poly(x, degree = 4))
ftop=summary(fto)
ftop
anova(fto)

The square of the t values from summary(fto) should be the F values from anova(ft).
All of the tests for the fourth degree term, whether from summary(ft), anova(ft),

or summary(fto) should have the same P value. Except for the fourth degree term, the
P values from summary(ft) are not expected to agree with those from anova(ft) and
summary(fto). In this example it is merely a coincidence that they nearly agree for the third
degree term also.

12.4.1 Fisher’s lack-of-fit test

See also Section 8.6.
# SLR
ft <- lm(y ˜ x)
fitp=summary(ft)
ftp
anova(ft)

# One-way
G=factor(x)



64 12. ONE-WAY ANOVA

fit <- lm(y ˜ G-1)
fitp=summary(fit)
fitp
anova(ft,fit)

12.4.2 Figures

This code uses output from the previous subsection.

#Figure 12.6
plot(x,y)
#Figure 12.7
PL=c(4,6,8,10,12)
plot(PL,fit$coef)
#Figure 12.8 and 9
plot(x,rstandard(ft),xlab="Plate Length",ylab="Standardized residuals",
main="Residual-Plate Length plot")
qqnorm(rstandard(ft),ylab="Standardized residuals")
# Wilk-Francia Statistic
rankit=qnorm(ppoints(rstandard(ft),a=I(3/8)))
ys=sort(rstandard(ft))
Wprime=(cor(rankit,ys))**2
Wprime
#Figure 12.10, 11, and 12
plot(x,rstandard(fit),xlab="Plate Length",ylab="Standardized residuals",
main="Residual-Plate Length plot")
plot(fit$fit,rstandard(fit),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")
qqnorm(rstandard(fit),ylab="Standardized residuals")
# Wilk-Francia Statistic
rankit=qnorm(ppoints(rstandard(fit),a=I(3/8)))
ys=sort(rstandard(fit))
Wprime=(cor(rankit,ys))**2
Wprime

12.5 Weighted least squares

This section needs checking

asi <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab12-9.dat",
sep="",col.names=c("x","y"))

attach(asi)
asi

fit <- lm(y ˜ x)
fitp=summary(fit)
fitp
ii=factor(x)
pe= lm(y ˜ ii-1)
anova(lm(y ˜ 1),fit,pe)

# Create the data used in WLS example
pex <- lm(x ˜ ii-1)



12.5 WEIGHTED LEAST SQUARES 65

ymeans <- pe$coef
xmeans <- pex$coef
wts <- xmeans + 7 - xmeans # A column of 7s.

# Fit WLS model
wls <- lm(ymeans ˜ xmeans, wt=wts)
summary(wls)
anova(lm(ymeans ˜ 1),wls)

Compare the least squares estimates from the two summary commands, also the lack of fit error
term with the weighted least squares error term.

12.5.1 Unbalanced weights

trucks <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab6-8.dat",
sep="",col.names=c("x","y"))

attach(trucks)
trucks

fit <- lm(y ˜ x)
fitp=summary(fit)
fitp
ii=factor(x)
pe= lm(y ˜ ii-1)
anova(lm(y ˜ 1),fit,pe)

# Enter the data used in WLS example
ymeans = c(172.5, 664.3, 633.0, 900.3, 1202.0, 987.0, 1068.5)
x = c(0.5, 1.0, 4.0, 4.5, 5.0, 5.5, 6.0)
wts = c(2, 3, 3, 3, 3, 1, 2)

# Fit WLS model
wls <- lm(ymeans ˜ x, wt=wts)
summary(wls)
anova(lm(ymeans ˜ 1),wls)

Compare the least squares estimates from the two summary commands, also the lack of fit error
term with the weighted least squares error term.

12.5.2 Nondiagonal case

# At some point you need to have run install.packages("MASS")
library(MASS)
lm.gls(formula, data, W, subset, na.action, inverse = FALSE,
method = "qr", model = FALSE, x = FALSE, y = FALSE,
contrasts = NULL, ...)

W=weight matrix, inverse=false





Chapter 13

Multiple Comparisons

Obviously, this has hardly been started.
Throughout the chapter we assume that the following commands have been run.

mand <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab12-4.dat",
sep="",col.names=c("yy","C2","C3","C4","C5","C6","C7","C8","C9"))
attach(mand)
mand

ii = factor(C2)
y = log(yy)
fit <- lm(y ˜ ii)

fitp <- summary(fit)
fitp
anova(fit)

C3 = factor(C3)
C4 = factor(C4)
C5 = factor(C5)
C6 = factor(C6)
C7 = factor(C7)
C8 = factor(C8)
C9 = factor(C9)

Need to double check that this agrees with Section 12.4.

13.1 “Fisher’s” LSD

Do the overall F test first. If and only if that is significant, do individual tests. For pairwise compar-
isons in a one-way ANOVA, you can use pairwise.t.test(y, ii).

?? library(stats) ??

13.2 Bonferroni adjustments

Use appropriately adjusted quantiles. For pairwise comparisons in a one-way ANOVA, you can use
pairwise.t.test(y, ii, p.adj = "bonf").

13.3 Scheffé’s method

No new commands, just some programming.

install.packages("agricolae")

67



68 13. MULTIPLE COMPARISONS

library(agricolae)
scheffe.test(fit,"ii",group=TRUE)
MSE = deviance(fit)/df.residual(fit)
MSE
Fc <- anova(fit)["ii",4]
scheffe.test(y, ii, df.residual(fit), fit$sigmaˆ2, Fc, alpha = 0.05, group=TRUE, main = NULL)

13.4 Studentized range methods

Qobs =
4.9031−4.0964√

0.00421/4
=

The P value is
Pr[Q > 24.87] = 0.000

The way you would compute the P values is by running ptukey(24.87,7,39,lower.tail=FALSE).

13.4.1 Honest John’s significant difference

To find the percentile of the studentized range distribution use in the book. 4.39 = Q(0.95,7,40) =
qtukey( 0.95, nmeans = 7, df = 40) = qtukey(0.95,7,40). However, what
we really want is Q(0.95,7,39) = qtukey( 0.95, nmeans = 7, df = 39).

To fully automate the process, one or more of these should work.
TukeyHSD(aov(y ˜ ii))
TukeyHSD(lm(y ˜ ii))
TukeyHSD(fit)
TukeyHSD(summary(fit))
plot(TukeyHSD(aov(y ˜ ii)))

# Balanced two-way, main effects only.
TukeyHSD(summary(y˜ii+jj),"jj", "ii")



Chapter 14

Two-Way ANOVA

14.1 Unbalanced Two-way ANOVA

Code for the basic analysis including the diagnostic table and plots. The output name fisher.acv
has no meaning here, it is borrowed from the next chapter where an analysis of covariance is per-
formed on data presented by R.A. Fisher

rm(list = ls())
fisher.acv <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab14-1.dat",

sep="",col.names=c("Litter","Mother","Weight"))
attach(fisher.acv)
fisher.acv
#summary(fisher.acv)
# Weight[12]=NA
# Weight[which(Litter == "I" & Mother == "A")]=NA

#Summary tables
#L=factor(Litter) # Doing this wouldn’t hurt but Litter and
#M=factor(Mother) # Mother are nonnumeric, so this is not needed
cr <- lm(Weight ˜ Litter:Mother)
crp=summary(cr)
crp
anova(cr)

infv = c(Weight,cr$fit,hatvalues(cr),rstandard(cr),rstudent(cr),cooks.distance(cr))
inf=matrix(infv,I(crp$df[1]+crp$df[2]),6,dimnames = list(NULL,

c("y", "yhat", "lev","r","t","C")))
inf

par(mfrow=c(2,2))
qqnorm(rstandard(cr),ylab="Standardized residuals")
plot(cr$fit,rstandard(cr),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")
boxplot(rstandard(cr)˜Litter,xlab="Litters",
ylab="Standardized residuals",main="Residual-Litters plot")
boxplot(rstandard(cr)˜Mother,xlab="Mothers",
ylab="Standardized residuals",main="Residual-Mothers plot")

69



70 14. TWO-WAY ANOVA

# Wilk-Francia
rankit=qnorm(ppoints(rstandard(cr),a=I(3/8)))
ys=sort(rstandard(cr))
Wprime=(cor(rankit,ys))**2
Wprime

i=seq(1,61,1)
Leverage=hatvalues(cr)
par(mfrow=c(2,2))
plot(i,Leverage,main="Leverage index plot")
plot(i,rstudent(cr),main="t residual index plot")
plot(i,cooks.distance(cr),main="Cook’s distance index plot")

# This gives group means
cr <- lm(Weight ˜ Litter:Mother-1)
crp=summary(cr)
crp

# These give Table 14.3
cr <- lm(Weight ˜ Mother + Litter + Mother:Litter)
anova(cr)
cr <- lm(Weight ˜ Litter + Mother + Litter:Mother)
anova(cr)

# These give Table 14.2
LM <- lm(Weight ˜ Mother + Litter + Mother:Litter)
LMp=summary(LM)
LM.cp=((LMp$sigma**2 * LMp$df[2])/LMp$sigma**2)-LMp$df[2]+LMp$df[1]
LM.cp

L.M <- lm(Weight ˜ Mother + Litter)
L.Mp=summary(L.M)
L.M.cp=((L.Mp$sigma**2 * L.Mp$df[2])/LMp$sigma**2)-L.Mp$df[2]+L.Mp$df[1]
L.M.cp

L <- lm(Weight ˜ Litter)
Lp=summary(L)
L.cp=((Lp$sigma**2 * Lp$df[2])/LMp$sigma**2)-Lp$df[2]+Lp$df[1]
L.cp

M <- lm(Weight ˜ Mother)
Mp=summary(M)
M.cp=((Mp$sigma**2 * Mp$df[2])/LMp$sigma**2)-Mp$df[2]+Mp$df[1]
M.cp

G <- lm(Weight ˜ 1)
Gp=summary(G)
G.cp=((Gp$sigma**2 * Gp$df[2])/LMp$sigma**2)-Gp$df[2]+Gp$df[1]
G.cp

Cpinf = c("[LM]","[L][M]","[L]","[M]","[G]",



14.2 MODELING CONTRASTS 71

LMp$sigma**2 * LMp$df[2], L.Mp$sigma**2 * L.Mp$df[2], Lp$sigma**2 * Lp$df[2], Mp$sigma**2 * Mp$df[2], Gp$sigma**2 * Gp$df[2],
LMp$df[2], L.Mp$df[2], Lp$df[2], Mp$df[2], Gp$df[2],
LM.cp, L.M.cp, L.cp, M.cp, G.cp)
CpTable=matrix(Cpinf,5,4,dimnames = list(NULL,

c("Model","SSE","dfE","C_p")))
CpTable

The command summary(cr) produces the table of coefficients for the various fitted models.
Note that side conditions are incorporated so that the software can produce unique estimates of the
model coefficients. In fact, the side conditions used for the models Litter:Mother and Litter
+ Mother + Litter:Mother are not even consistent. The former sets the coefficient for Lit-
ter J and Mother J (LitterJ:MotherJ) equal to 0, making the the intercept estimate the mean
for Litter J and Mother J and all of the other coefficients are their group mean minus the Litter J,
Mother J mean. The latter sets every coefficient involving group A equal to 0, making the intercept
estimate the mean for Litter A and Mother A. The other coefficients have, for example, the mean
for Litter I, Mother J being the sum of the estimated effects for intercept, LitterI, MotherJ and
LitterI:MotherJ.

The P values for pairwise comparisons in the one way ANOVA on Mothers can be obtained
using

#pairwise.t.test(Weight,Mother,p.adjust.method="bonferroni")
pairwise.t.test(Weight,Mother,p.adjust="none")

To perform the analysis with case 12 deleted, AFTER READING IN THE DATA run the
command Weight[12]=NA and then repeat the code given earlier. To drop out the entire
Litter I, Mother A group you can use Weight[which(Litter == "I" & Mother ==
"A")]=NA.

14.2 Modeling contrasts

Because of how R’s lm command chooses side conditions for reporting the table of coefficients, the
first three entries in the unnumbered table of pairwise comparisons (comparing the other Mother
groups to Mother A) are available from fitting

cr1 <- lm(Weight ˜ Litter + Mother)
summary(cr1)

The Bonferroni P values reported in the book are the number of pairwise comparisons, i.e.
(4

2

)
= 6,

times the P values reported here, with values exceeding 1 rounded off to 1. Finding the last three
Mother pairwise comparisons requires the regression fitting of the next section.

14.2.1 Nonequivalence of Tests

We now construct (with the help of Fletcher Christensen) the factor variables needed to obtain the
F statistics in the displays of Subsection 14.2.1.

# Construct the factor variable for mothers that does
# not distinguish between groups A and F
MomAF = Mother
MomAF[which(MomAF == "F")]="A"
MomAF

# Construct the factor variable for mothers that does
# not distinguish between groups I and J
MomIJ = Mother
MomIJ[which(MomIJ == "I")]="J"



72 14. TWO-WAY ANOVA

MomIJ

# Construct the factor variable for mothers that does
# not distinguish between groups A and F or between groups I and J
MomAF.IJ = MomAF
MomAF.IJ[which(MomAF.IJ == "I")]="J"
MomAF.IJ

# Not used in book but
# construct a factor variable for mothers that does
# not distinguish between groups A, F, and J
MomAFJ = Mother
MomAFJ[which(MomAFJ == "F" | MomAFJ == "J")]="A"
MomAFJ

Given these new factor variables we obtain the displayed F tests in Subsection 14.2.1. Recall
that these tests illustrate that F tests for whether Mothers A and F have the same effect change
depending on the other assumptions built into the model. In the anova( , , ) commands, our
interest is in the penultimate F test.

# Subsection 14.2.1, first display
cr <- lm(Weight ˜ Mother:Litter)
cr1 <- lm(Weight ˜ Mother)
# These give Table 14.3
cr2 <- lm(Weight ˜ MomAF)
anova(cr2,cr1,cr)

# Second and third displays
cr <- lm(Weight ˜ Mother:Litter)
cr1 <- lm(Weight ˜ Mother + Litter)
cr2 <- lm(Weight ˜ MomAF+Litter)
anova(cr2,cr1,cr)
anova(cr2,cr1)

# Last display
cr <- lm(Weight ˜ Mother:Litter)
cr1 <- lm(Weight ˜ MomIJ + Litter)
cr2 <- lm(Weight ˜ MomAF.IJ+Litter)
anova(cr2,cr1,cr)

14.3 Regression modeling

We need to create the indicator variables X1 to X8. Once we have the indicator variables, the rest of
the computing in this section is straightforward.

One way create the indicator variables is to create 0 vectors of the correct length and then
identify which terms in the vector should be 1. Having previously read in the data.

J=Mother-Mother+1
X1=J-J
X2=X1
X3=X1
X4=X1
X5=X1
X6=X1



14.3 REGRESSION MODELING 73

X7=X1
X8=X1
X1[which(Litter == "A")]=1
X2[which(Litter == "F")]=1
X3[which(Litter == "I")]=1
X4[which(Litter == "J")]=1

X5[which(Mother == "A")]=1
X6[which(Mother == "F")]=1
X7[which(Mother == "I")]=1
X7[which(Mother == "J")]=1

# turn factor variables X1 and X5 into numeric variables.
X1=as.numeric(X1)
X2=as.numeric(X2)
X3=as.numeric(X3)
X4=as.numeric(X4)
X5=as.numeric(X5)
X6=as.numeric(X6)
X7=as.numeric(X7)
X8=as.numeric(X8)

Alternatively, we could use the model matrix from fitting the model but unfortunately the model
matrix has been adjusted for the side conditions that R chooses to use, so we will still need to define
X1 and X5 directly.

rm(list = ls())
fisher.acv <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab14-1.dat",

sep="",col.names=c("Litter","Mother","Weight"))
attach(fisher.acv)
fisher.acv
#summary(fisher.acv)

#Summary tables
#L=factor(Litter) # Doing this wouldn’t hurt but Litter and
#M=factor(Mother) # Mother are nonnumeric, so this is not needed
cr <- lm(Weight ˜ Litter+Mother)
crp=summary(cr)
crp
anova(cr)

# Define indicator variables for the subsection
X <- model.matrix(cr)
X
J=X[,1]
X2=X[,2]
X3=X[,3]
X4=X[,4]
X6=X[,5]
X7=X[,6]
X8=X[,7]
X1=J-J
X5=J-J



74 14. TWO-WAY ANOVA

X1[which(Litter == "A")]=1
X5[which(Mother == "A")]=1
# turn factor variables X1 and X5 into numeric variables.
X1=as.numeric(X1)
X5=as.numeric(X5)

# Fit additive model using indicators
cr1=lm(Weight ˜ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8)
summary(cr1)
anova(c1)

With X1 to X8 treated as regression variables, virtually all programs for fitting such a model will
drop out variables X4 and X8 because they create linear dependencies with the previous variables.
X4 and X8 are, respectively, the indicator variables for Litter J and Mother J, so dropping them
make the other estimated effects into comparisons with those groups. Thus the rows of the Table
of Coefficients reported for X5, X6, X7 agree with the entries for −(ηJ −ηA), −(ηJ −ηF), and
−(ηJ −ηI) in the unnumbered table of pairwise comparisons from early in Section 14.2. We earlier
obtained the entries for ηF −ηA, ηI −ηA, and ηJ −ηA by fitting an additive effects ANOVA model
in R. The remaining effect that we need for this unnumbered table is ηI −ηF which can be obtained
dropping X6 (the indicator variable associated with Mother F). Fit

cr1=lm(Weight ˜ X1 + X2 + X3 + X4 + X5 + X7 + X8)
summary(cr1)

and look at the row for X7 (Mother I). As indicated earlier, to get the Bonferroni P values reported
in the book, the P values reported here have to be multiplied by 6 (with truncation of larger numbers
down to 1).

14.4 Homologous factors

14.4.1 Symmetric additive effects

Again the computing is straightforward except that this section is using different names for the
indicator variables defined in the previous section

rm(list = ls())
fisher.acv <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab14-1.dat",

sep="",col.names=c("Litter","Mother","Weight"))
attach(fisher.acv)
fisher.acv
#summary(fisher.acv)

#Summary tables
#L=factor(Litter) # Doing this wouldn’t hurt but Litter and
#M=factor(Mother) # Mother are nonnumeric, so this is not needed
cr <- lm(Weight ˜ Litter+Mother)
crp=summary(cr)
crp
anova(cr)

# Repeat indicator variables as used in previous subsection
X <- model.matrix(cr)
X
J=X[,1]



14.4 HOMOLOGOUS FACTORS 75

X2=X[,2]
X3=X[,3]
X4=X[,4]
X6=X[,5]
X7=X[,6]
X8=X[,7]
X1=J-J
X5=J-J
X1[which(Litter == "A")]=1
X5[which(Mother == "A")]=1
# turn factor variables X1 and X5 into numeric variables.
X1=as.numeric(X1)
X5=as.numeric(X5)

# Make indicator variable notation agree with this subsection
La = X1
Lf = X2
Li = X3
Lj = X4
Ma = X5
Mf = X6
Mi = X7
Mj = X8
# Define new variables used in subsection.
A=La + Ma
F=Lf + Mf
I=Li + Mi
J=Lj + Mj

# Obtain output for models fitted in subsection
cr1=lm(Weight ˜ La + Lf + Li + Lj + Ma + Mf + Mi + Mj)
anova(cr1)
cr1=lm(Weight ˜ La + Lf + Li + Ma + Mf + Mi)
anova(cr1)
cr2=lm(Weight ˜ A + F + I + J)
anova(cr2)
cr2=lm(Weight ˜ A + F + I)
anova(cr2)
anova(cr2,cr1)
cr <- lm(Weight ˜ Litter:Mother)
anova(cr2,cr1,cr)

14.4.2 Skew symmetric additive effects

Add the following to the code of the previous subsection.
ssa=(La - Ma)
ssf=(Lf - Mf)
ssi=(Li - Mi)
ssj=(Lj - Mj)
cr3=lm(Weight ˜ ssa + ssf + ssi + ssj)
summary(cr3)
anova(cr3)



76 14. TWO-WAY ANOVA

anova(cr3,cr1)

14.4.3 Symmetry

First we change the four Litter and Mother categories identified by letters into numbers: 1 to 4 for ii
and 0 to 3 forjj. Then we change the pairs of numbers into a single index r = 1, . . . ,16. Finally, as
per Table 14.6, we modify r into the factor variable s that treats Litters and Mothers symmetrically.
The remainder of the computing is straightforward.
ii=Litter
jj=Mother
ii[which(Litter == "A")]=1
ii[which(Litter == "F")]=2
ii[which(Litter == "I")]=3
ii[which(Litter == "J")]=4
jj[which(Mother == "A")]=0
jj[which(Mother == "F")]=1
jj[which(Mother == "I")]=2
jj[which(Mother == "J")]=3
# Next turn factor variables ii and jj into numeric index variable r.
ii=as.numeric(ii)
jj=as.numeric(jj)
r=ii+(4*jj)
# Construct symmetry index s.
s=r
s[which(r == 5)]=2
s[which(r == 9)]=3
s[which(r == 10)]=7
s[which(r == 13)]=4
s[which(r == 14)]=8
s[which(r == 15)]=12

# Turn numeric variables r and s into factor variables.
r=factor(r)
s=factor(s)
cr=lm(Weight ˜ r)
anova(cr)
cr1=lm(Weight ˜ s)
anova(cr1,cr)



Chapter 15

ACOVA and Interactions

15.1 One covariate example

rm(list = ls())
fisher.acv <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab15-1.dat",
sep="",col.names=c("Body","Heart","sex"))
attach(fisher.acv)
fisher.acv
#summary(fisher.acv)

#Summary tables
Sex=factor(sex)
cr <- lm(Heart ˜ Sex+Body)
crp=summary(cr)
crp
anova(cr)

confint(cr)
# or compute confidence intervals yourself
R=crp$cov.unscaled
se <- sqrt(diag(R)) * crp$sigma
ci = c(cr$coef - qt(.975,crp$df[2])*se,cr$coef + qt(.975,crp$df[2])*se)
CI95 = matrix(ci,crp$df[1],2)
CI95
# This code works for ‘‘lm’’ but not ‘‘aov’’

#prediction Both sexes, Body=2.6
new = data.frame(Sex=c("1","2"),Body=c(2.6,2.6))
predict(cr,new,se.fit=T,interval="confidence")
predict(cr,new,interval="prediction")

infv = c(y,cr$fit,hatvalues(cr),rstandard(cr),rstudent(cr),
cooks.distance(cr))

inf=matrix(infv,I(crp$df[1]+crp$df[2]),6,dimnames = list(NULL,
c("y", "yhat", "lev","r","t","C")))

inf

77



78 15. ACOVA AND INTERACTIONS

# delete y from table if missing observations

qqnorm(rstandard(cr),ylab="Standardized residuals")

# Wilk-Francia
rankit=qnorm(ppoints(rstandard(cr),a=I(3/8)))
ys=sort(rstandard(cr))
Wprime=(cor(rankit,ys))**2
Wprime

plot(cr$fit,rstandard(cr),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")
plot(sex,rstandard(cr),xlab="x",
ylab="Standardized residuals",main="Residual-Sex plot")

15.2 Regression modeling

15.3 ACOVA and two-way ANOVA

15.4 Near replicate lack-or-fit tests

This code is about clustering cases to identify near replicates. It uses some standard R and also the
package cluster.

https://cran.r-project.org/web/packages/cluster/index.html

install.packages("cluster")
library(cluster)
coleman <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",
sep="",col.names=c("School","x1","x2","x3","x4","x5","y"))
attach(coleman)
coleman
X=coleman[,-1]
X=X[,-6]
X
nr=agnes(X,diss=F,method="average")
# other methods: single, complete, ward
plot(nr,which.plots=2)
nrep=cutree(nr,k=12) #cutree(as.hclust(nr), h = 6))
nrep
nr2=pam(X,12)
nr2$clustering
nr3=kmeans(X,12)
nr3$cluster

nearrep=lm(y ˜ x1+x2+x3+x4+x5 + nrep)
summary(nearrep)
nearrep2=lm(y ˜ x1+x2+x3+x4+x5 + nr2$clustering)
summary(nearrep2)
nearrep3=lm(y ˜ x1+x2+x3+x4+x5 + nr3$cluster)

https://cran.r-project.org/web/packages/cluster/index.html


15.4 NEAR REPLICATE LACK-OR-FIT TESTS 79

summary(nearrep3)

running kmeans repeatedly does not always give the same answer. pam is a robust version of
kmeans.





Chapter 16

Multifactor Structures

16.1 Unbalanced Three-way: Moisture data

The following code shows how to fit a variety of the models used in this section. At the end, for the
full interaction model it also includes output from stepAIC. The stepAIC output drops the three-
factor interaction, then it checks to drop a two-factor interaction, then with only one two-factor in
the model it checks to see if it can drop that two-factor or the main effect not in the two-factor at
which point it stops.

rm(list = ls())
scheffe <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab16-1.dat",
sep="",col.names=c("y","a","b","c"))
attach(scheffe)
scheffe
summary(scheffe)

#Summary tables
A=factor(a)
B=factor(b)
C=factor(c)
b2=b*b
sabc <- lm(y ˜ A:B:C)
coef=summary(sabc)
coef
anova(sabc)

sabc <- lm(y ˜ A*B*C)
#coef=summary(sabc)
#coef
anova(sabc)

sabc <- lm(y ˜ A:B + C-1)
#coef=summary(sabc)
#coef
anova(sabc)

sabc <- lm(y˜A/(b+I(bˆ2))+C -1)
#coef=summary(sabc)

81



82 16. MULTIFACTOR STRUCTURES

#coef
anova(sabc)

sabc <- lm(y ˜ A + A:b + C - 1)
coef=summary(sabc)
coef
anova(sabc)

sabc <- lm(y ˜ A/b + C - 1)
coef=summary(sabc)
coef
anova(sabc)

# Generate the variable A2 discussed in the text.
A2=A
A2[(A2 == 3)] <- 2

sabc <- lm(y ˜ A*B*C)
library(MASS)
stepAIC(sabc)

16.1.1 Computing

Because it is the easiest program I know, most of the analyses in this book were done in Minitab. We
now present and contrast R and SAS code for fitting [AB][C] and discuss the fitting of other models
from this section. Table 16.7 illustrates the variables needed for a full analysis. The online data file
contains only the y values and indices for the three groups. Creating X and X2 is generally easy.
Creating the variable A2 that does not distinguish between salts 2 and 3 can be trickier. If we had a
huge number of observations, we would want to write a program to modify A into A2. With the data
we have, in Minitab it is easy to make a copy of A and modify it appropriately in the spreadsheet.
Similarly, it is easy to create A2 in R using A2=A followed by A2[(A2 == 3)] <- 2. For SAS,
I would probably modify the data file so that I could read A2 with the rest of the data.

An R script for fitting [AB][C] follows. R needs to locate the data file, which in this case is
located at E:\Books\ANREG2\DATA2\tab16-1.dat.
rm(list = ls())
scheffe <- read.table("E:\\Books\\ANREG2\\DATA2\\tab16-1.dat",
sep="",col.names=c("y","a","b","c"))
attach(scheffe)
scheffe
summary(scheffe)

#Summary tables
A=factor(a)
B=factor(b)
C=factor(c)
X=b
X2=X*X
sabc <- lm(y ˜ A:B + C)
coef=summary(sabc)
coef



16.1 UNBALANCED THREE-WAY: MOISTURE DATA 83

Table 16.1: Moisture data, indices, and predictors.

A B C X X2 A2 A B C X X2 A2
y i j k x x2 y i j k x x2

8 1 1 1 1 1 1 11 1 2 2 2 4 1
17 1 2 1 2 4 1 16 1 3 2 3 9 1
22 1 3 1 3 9 1 3 2 1 2 1 1 2
7 2 1 1 1 1 2 17 2 2 2 2 4 2

26 2 2 1 2 4 2 32 2 3 2 3 9 2
34 2 3 1 3 9 2 5 3 1 2 1 1 2
10 3 1 1 1 1 2 16 3 2 2 2 4 2
24 3 2 1 2 4 2 33 3 3 2 3 9 2
39 3 3 1 3 9 2 4 1 1 2 1 1 1
13 1 2 1 2 4 1 10 1 2 2 2 4 1
20 1 3 1 3 9 1 15 1 3 2 3 9 1
10 2 1 1 1 1 2 5 2 1 2 1 1 2
24 2 2 1 2 4 2 19 2 2 2 2 4 2
9 3 1 1 1 1 2 29 2 3 2 3 9 2

36 3 3 1 3 9 2 4 3 1 2 1 1 2
5 1 1 2 1 1 1 34 3 3 2 3 9 2

anova(sabc)

SAS code for fitting [AB][C] follows. The code assumes that the data file is the same directory
(folder) as the SAS file.

options ps=60 ls=72 nodate;
data anova;

infile ’tab16-1.dat’;
input y A B C;
X = B;
X2=X*X;

proc glm data=anova;
class A B C ;
model y = A*B C ;
means C / lsd alpha=.01 ;
output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=sr;

proc plot;
plot ehat*yhat sr*R/ vpos=16 hpos=32;

proc rank data=new normal=blom;
var sr;
ranks nscores;

proc plot;
plot sr*nscores/vpos=16 hpos=32;

run;

To fit the other models, one needs to modify the part of the code that specifies the model. In
R this involves changes to “sabc <- lm(y ∼ A:B + C)” and in SAS it involves changes to
“model y = A*B C;”. Alternative model specifications follow.

Model Minitab R SAS
[ABC] A|B|C A:B:C-1 A*B*C
[AB][BC] A|B B|C A:B+B:C-1 A*B B*C
[AB][C] A|B C A:B+C-1 A*B C
[A0][A1][A2][C] A|X A|X2 C A+A:X+A:X2+C A A*X A*X2 C
[A0][A1][C], A21 = A31 A A2|X C A+A2:X+C-1 A A2*X C/noint
[A0][A1][C], A21 = A31, A20 = A30 A2 A2|X C A2+A2:X+C-1 A2 A2*X C



84 16. MULTIFACTOR STRUCTURES

16.2 Balanced three-way: Abrasion resistance data

rm(list = ls())
abraid <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab16-8.dat",
sep="",col.names=c("y","s","f","p","rep"))
attach(abraid)
abraid
summary(abraid)

S=factor(s)
F=factor(f)
P=factor(p)
p2=p*p
bsfp <- lm(y ˜ S:F:P)
coef=summary(bsfp)
coef
anova(bsfp)

bsfp <- lm(y ˜ (S+F+P)ˆ3)
coef=summary(bsfp)
coef
anova(bsfp)

qqnorm(rstudent(bsfp),ylab="Standardized residuals")
plot(bsfp$fit,rstudent(bsfp),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")

# Wilk-Francia
rankit=qnorm(ppoints(rstandard(bsfp),a=I(3/8)))
ys=sort(rstandard(bsfp))
Wprime=(cor(rankit,ys))**2
Wprime

# conf. int. for cell 1,1,1
new = data.frame(S=c("1"),F=c("1"),P=c("1"))
predict(bsfp,new,se.fit=T,interval="confidence",level=0.95)

bsfp <- lm(y ˜ S:F + F:P -1)
bsfp <- lm(y ˜ S:F + F:p + F:p2 -1)
bsfp <- lm(y ˜ S:F + F:p -1)

#Summary tables
S=factor(s)
F=factor(f)
P=factor(p)
p2=p*p
p0=c(1, 2, 3, 1, 2, 3, 0, 0, 0, 0, 0, 0, 1, 2, 3, 1, 2, 3, 0, 0, 0, 0, 0, 0)



16.3 HIGHER ORDER STRUCTURES 85

bsfp <- lm(y ˜ S:F + p0 -1)

sf= c(11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 21, 21, 21, 21, 21, 21,
21, 21, 21, 21, 21, 21)

SF=factor(sf)
bsfp <- lm(y ˜ SF + p0 + -1)
coef=summary(bsfp)
coef
anova(bsfp)

16.3 Higher order structures

It would be interesting to see how well stepAIC works on higher-order structures.





Chapter 17

Basic Experimental Designs

17.4 Randomized complete block designs

rm(list = ls())
lenth.rcb <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab17-1.dat",
sep="",col.names=c("b","t","y"))
attach(lenth.rcb)
lenth.rcb
#summary(lenth.rcb)

#Summary tables
B=factor(b)
T=factor(t)
cr <- lm(y ˜ B+T)
crp=summary(cr)
crp
anova(cr)

#compute confidence intervals
R=crp$cov.unscaled
se <- sqrt(diag(R)) * crp$sigma
ci = c(cr$coef - qt(.975,crp$df[2])*se,cr$coef + qt(.975,crp$df[2])*se)
CI95 = matrix(ci,crp$df[1],2)
CI95

#prediction
new = data.frame(B=c("1","1","1","1"),T=c("1","2","3","4"))
predict(cr,new,#se.fit=T,

interval="confidence")
predict(cr,new,interval="prediction")

infv = c(y,cr$fit,hatvalues(cr),rstandard(cr),rstudent(cr),
cooks.distance(cr))

inf=matrix(infv,I(crp$df[1]+crp$df[2]),6,dimnames = list(NULL,
c("y", "yhat", "lev","r","t","C")))

inf
# delete y from table if missing observations

87



88 17. BASIC EXPERIMENTAL DESIGNS

infv = c(y,cr$fit,b,t,hatvalues(cr),rstandard(cr),rstudent(cr),
cooks.distance(cr))

inf=matrix(infv,I(crp$df[1]+crp$df[2]),8,dimnames = list(NULL,
c("y", "yhat", "Blks","Trts","lev","r","t","C")))

inf
# delete y from table if missing observations

qqnorm(rstandard(cr),ylab="Standardized residuals")
plot(cr$fit,rstandard(cr),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")

plot(b,rstandard(cr),xlab="Blocks",
ylab="Standardized residuals",main="Residual-Block plot")

Leverage=hatvalues(cr)
plot(10*b+t,Leverage,main="Leverage plot")

# Wilk-Francia
rankit=qnorm(ppoints(rstandard(cr),a=I(3/8)))
ys=sort(rstandard(cr))
Wprime=(cor(rankit,ys))**2
Wprime

17.4.1 Paired comparisons

In Section 17.4.1 of the book we mention that the paired comparison procedure is equivalent to
fitting a randomized complete block model. To do this we need not only the (x,y) data structure but
a third variable, say, z that identifies the pair. x and z need to be factor variables. Fit the two-way
ANOVA

dr <- lm(y ˜ x + z)
drp=summary(dr)
drp
anova(dr)

and look at the tests associated with z to establish differences between samples. We do not have a
data file set up for this analysis.

17.5 Latin squares

root <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab17-4.dat",
sep="",col.names=c("y","Rows","Cols","Trts"))

attach(root)
T=factor(Trts)
R=factor(Rows)
C=factor(Cols)
fit <- lm(y ˜ C + R + T)
anova(fit)

T
Contrast = gsub("[ˆ4]","1",T) #Change anything that is not a 4 into a 1



17.6 BALANCED INCOMPLETE BLOCKS 89

Contrast = factor(Contrast)
Contrast #Check that this did what it was supposed to
fit <- lm(y ˜ C + R + Contrast)
anova(fit)

17.6 Balanced incomplete blocks

rm(list = ls())
dish <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab17-7.dat",

sep="",col.names=c("Blk","Trt","y"))
attach(dish)
Blocks = factor(Blk)
Trt = factor(Trt)
fit <- lm(y ˜ Blocks + Trt)
fitp <- summary(fit)
anova(fit)

infv = c(y,fit$fit,hatvalues(fit),rstandard(fit),rstudent(fit),
cooks.distance(fit))

inf=matrix(infv,I(fitp$df[1]+fitp$df[2]),6,dimnames = list(NULL,
c("y", "yhat", "lev","r","t","C")))

inf
# delete y from table if missing observations

17.7 Youden squares

rm(list = ls())
root <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab17-11.dat",

sep="",col.names=c("y","Rows","Cols","Trts"))
attach(root)
T=factor(Trts)
R=factor(Rows)
C=factor(Cols)
fit <- lm(y ˜ R + C + T)
fitp <- summary(fit)
anova(fit)
infv = c(y,fit$fit,hatvalues(fit),rstandard(fit),rstudent(fit),

cooks.distance(fit))
inf=matrix(infv,I(fitp$df[1]+fitp$df[2]),6,dimnames = list(NULL,

c("y", "yhat", "lev","r","t","C")))
inf
# delete y from table if missing observations





Chapter 18

Factorial Treatments

18.1

18.2 RCB Analysis

We already had the chance to check assumptions on this model in the previous chapter.
lenth.rcb <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab18-1.dat",
sep="",col.names=c("b","t","y","Disk","Window"))
attach(lenth.rcb)
lenth.rcb

B=factor(b)
T=factor(t)
W=factor(Window)
D=factor(Disk)
fit <- lm(y ˜ B+D*W)
fitp=summary(fit)
fitp
anova(fit)
fit <- lm(y ˜ B+W*D)
anova(fit)

18.4 Interaction in a Latin square

rm(list = ls())
potato <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab18-2.dat",
sep="",col.names=c("Rows","Cols","Nit","Pot","y"))
attach(potato)
potato
# Create a factor variable for treatments since not in data file
Trts=10*Nit+Pot
Trts=c(4,1,0,5,3,2,1,2,4,3,0,5,5,3,2,4,1,0,0,4,1,2,5,3,2,5,3,0,4,1,3,0,5,1,2,4)

T=factor(Trts)
R=factor(Rows)
C=factor(Cols)
P=factor(Pot)
p=Pot
p2=p*p
N=factor(Nit)

91



92 18. FACTORIAL TREATMENTS

p2=p*p

bsfp <- lm(y ˜ R + C + T)
anova(bsfp)

par(mfrow=c(2,2))
plot(bsfp$fit,rstudent(bsfp),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")
plot(Rows,rstudent(bsfp),xlab="Rows",
ylab="Standardized residuals",main="Residual-Rows plot")
plot(Cols,rstudent(bsfp),xlab="Columns",
ylab="Standardized residuals",main="Residual-Columns plot")
plot(Trts,rstudent(bsfp),xlab="Treatments",
ylab="Standardized residuals",main="Residual-Treatments plot")

par(mfrow=c(1,1))
qqnorm(rstudent(bsfp),ylab="Standardized residuals")
# Wilk-Francia
rankit=qnorm(ppoints(rstandard(bsfp),a=I(3/8)))
ys=sort(rstandard(bsfp))
Wprime=(cor(rankit,ys))**2
Wprime

bsfp <- lm(y ˜ R + C + N*P)
anova(bsfp)
bsfp <- lm(y ˜ R + C + N*p + N*p2)
anova(bsfp)
bsfp <- lm(y ˜ R + C + N*p)
anova(bsfp)
coef=summary(bsfp)
coef
bsfp <- lm(y ˜ R + C + N*p-p)
anova(bsfp)
coef=summary(bsfp)
coef

The last two models fitted are equivalent but have slightly different table of coefficients. The last
one presents the slopes for each level of nitrogen directly. The penultimate model presents the slope
for the low (first listed) level of nitrogen and the difference between the two slopes. The table of
coefficients in the book is from Minitab and it presents the average slope and the number that you
have to add to the average slope to get the slope for the low level of nitrogen. By subtracting this
same number you get the slope for the high level of nitrogen. Note that the t test for the number you
have to add in Minitab is the same as the t test for the difference between slopes in the penultimate
model.

18.5 A balanced incomplete block design

rm(list = ls())
dish <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab18-5A.dat",

sep="",col.names=c("Row","Blk","Trt","y","Det","Amt","Cntl"))
attach(dish)
Treatments = factor(Trt)



18.6 EXTENSIONS OF LATIN SQUARES 93

Blocks = factor(Blk)
Det = factor(Det)
Amount = factor(Amt)
Control = factor(Cntl)
a = Amt
a2=a*a
a3=a2*a
fit <- lm(y ˜ Blocks + Treatments)
anova(fit)
fit <- lm(y ˜ Blocks + Control + Det*Amount)
anova(fit)
fit <- lm(y ˜ Blocks + Control + Det*a + Det*a2 + Det*a3)
anova(fit)

Det
# Det 3 is the control, 1=I,2=II
d1 = gsub("[ˆ1]","0",Det)
d2 = gsub("[ˆ2]","0",Det)
d3 = gsub("[ˆ3]","0",Det)
d1 = as.numeric(d1)
d2 = as.numeric(d2)/2
d3 = as.numeric(d3)/3
matrix(c(d1,d2,d3),ncol=3)

fit <- lm(y ˜ Blocks + d3 + d1 + d1:a + d2:a + d1:a2 + d2:a2 + d1:a3 + d2:a3)
anova(fit)

fit <- lm(y ˜ Blocks + d3 + d1 + d1:a + d2:a + d1:a2)

fitp=summary(fit)
fitp

18.6 Extensions of Latin Squares

rm(list = ls())
milk <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab18-8.dat",

sep="",col.names=c("y","Sq","Period","Col","Cow","Trt"))
attach(milk)
s=factor(Sq)
p=factor(Period)
c=factor(Col)
cw=factor(Cow)
t=factor(Trt)
fit <- lm(y˜s + s:c + s:p + t)
fit <- lm(y˜s + s:c + p + s:p + t)
fit <- lm(y˜cw + p + t)
anova(fit)





Chapter 19

Dependent Data

19.1 Split plots

In longitudinal data analysis these models are known as random intercept models because every
individual has a separate random effect associated with it.

19.1.1 Whole plot analysis

rm(list = ls())
garnw <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab19-1w.dat",
sep="",col.names=c("rep","l","y"))
attach(garnw)
garnw
summary(garnw)

Rep=factor(rep)
L=factor(l)

wp <- lm(y ˜ Rep + L)
anova(wp)

par(mfrow=c(2,2))
qqnorm(rstudent(wp),ylab="Standardized residuals")
plot(wp$fit,rstudent(wp),xlab="Fitted",
ylab="Standardized residuals",main="Whole-Plot Residual-Fitted plot")
plot(rep,rstudent(wp),xlab="Replications",
ylab="Standardized residuals",main="Whole-Plot Residual-Replication plot")
plot(l,rstudent(wp),xlab="Laundries",
ylab="Standardized residuals",main="Whole-Plot Residual-Laundry plot")

The following uses lm to get all the pieces of the full ANOVA table. Error 2 is the reported
Error. Error 1 is the effect Rep:L. The output uses Error 2 everywhere, even in places where we
need it to use Error 1. You need to compute the whole plot F statistics yourself.

rm(list = ls())
garn <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab19-1.dat",
sep="",col.names=c("rep","l","t","y"))
attach(garn)
garn
summary(garn)

95



96 19. DEPENDENT DATA

Rep=factor(rep)
L=factor(l)
T=factor(t)

ab <- lm(y ˜ (Rep + L)ˆ2 + T + T:L)
anova(ab)

abp <- summary(ab)
abp

infv = c(rep,l,t,y,ab$fit,hatvalues(ab),rstandard(ab),rstudent(ab),
cooks.distance(ab))

inf=matrix(infv,I(abp$df[1]+abp$df[2]),9,dimnames = list(NULL,
c("rep","l","t","y", "yhat", "lev","r","t","C")))

inf

#Residual Plots

par(mfrow=c(1,1))
qqnorm(rstudent(ab),ylab="Standardized residuals")

# Wilk-Francia
rankit=qnorm(ppoints(rstandard(ab),a=I(3/8)))
ys=sort(rstandard(ab))
Wprime=(cor(rankit,ys))**2
Wprime

par(mfrow=c(2,2))
plot(ab$fit,rstudent(ab),xlab="Fitted",
ylab="Standardized residuals",main="Subplot Residual-Fitted plot")
plot(rep,rstudent(ab),xlab="Replications",
ylab="Standardized residuals",main="Subplot Residual-Replication plot")
plot(l,rstudent(ab),xlab="Laundries",
ylab="Standardized residuals",main="Subplot Residual-Laundry plot")
plot(t,rstudent(ab),xlab="Tests",
ylab="Standardized residuals",main="Subplot Residual-Test plot")

19.1.2 Interaction plots

There is an “interaction.plot” command but it only works for balanced designs.

interaction.plot(Tests,Laundries,Fits)}

#Create a matrix with columns 1,2,3,5 from Table 19.3
inter = c(rep,t,l,ab$fit)
int=matrix(inter,I(abp$df[1]+abp$df[2]),4,dimnames = list(NULL,

c("rep","t","l","yhat")))



19.2 SPLIT PLOTS: ABRASION RESISTANCE 97

#Create a table of interaction effects with i=1
inter2=matrix(int[1:16,4],4,4)

test=c(1,2,3,4)
par(mfrow=c(1,1))
plot(test,inter2[1,],type="n",ylab="Fitted",ylim=c(0,15),
xaxt = "n", #frame = TRUE,
xlab="Test",lty=1,lwd=2) #,lab=c(4,5,7))
axis(1,at=c(1,2,3,4),labels=c("A","B","C","D"))
#axis(1, 1:4, LETTERS[1:4])
lines(test,inter2[1,],type="o",lty=1,lwd=2)
lines(test,inter2[2,],type="o",lty=2,lwd=2)
lines(test,inter2[3,],type="o",lty=3,lwd=2)
lines(test,inter2[4,],type="o",lty=4,lwd=2)
legend("topleft",c("Laundry"," 1"," 2"," 3"," 4"),lty=c(NA,1,2,3,4))

Some people use the program lmer from the package lme4 to analyze split plot models. The
lmer program does not reproduce the analysis given here. As of Feb. 10, 2023 lmer was
producing incorrect sums of squares and mean squares for whole plot effects but was giving the
correct F tests. The invidious thing is that it always gives MS/F = MSE(2), suggesting that [if you
assume the MS is correct], that all of the whole plot F tests are improperly using the subplot error
term. This programming error is exacerbated by the fact that lmer’s ANOVA table fails to print
out the Error terms, the source of the mistakes is not clear. The code book R-ALMIII illustrates the
problem.

19.2 Split plots: abrasion resistance

Because these data are balanced, the aov command becomes a useful alternative to lm in that it
can produce the proper ANOVA table. Unfortunately, aov does not work for unbalanced whole plot
data as treated in the previous section.

rm(list = ls())
abraid <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab19-6.dat",
sep="",col.names=c("y","s","f","p","rep","rot"))
attach(abraid)
abraid
summary(abraid)

S=factor(s)
F=factor(f)
P=factor(p)
RT=factor(rot)
RP=factor(rep)
p2=p*p
bsfp <- aov(y ˜ (S*F*P) + Error(RP:S:F:P) + RT + RT:(S*F*P))
summary(bsfp)
# Equivalent ways of specifying model
#bsfp <- aov(y ˜ S*F*P*RT + Error(RP:S:F:P))
# Delete and retype the ˆ in following!!!
#bsfp <- aov(y ˜ (S+F+P)ˆ3 + Error(RP:S:F:P) + RT + RT:(S+F+P)ˆ3)

http://www.stat.unm.edu/~fletcher/R-ALMIII.pdf


98 19. DEPENDENT DATA

#bsfp <- aov(y ˜ (S+F+P+RT)ˆ3 + Error(RP:S:F:P) + RT:(S+F+P)ˆ3)

The following uses lm to get all the pieces of the ANOVA table. Error 2 is the reported Error
Error 1 is the effect S:F:P:RP; the output uses Error 2 when we need it to use Error 1. You need
to compute the whole plot F statistics yourself.

abraid <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab19-6.dat",
sep="",col.names=c("y","s","f","p","rep","rot"))
attach(abraid)
abraid
summary(abraid)

S=factor(s)
F=factor(f)
P=factor(p)
RT=factor(rot)
RP=factor(rep)
p2=p*p
bsfp <- lm(y ˜ (S+F+P+RT)ˆ3 + S:F:P:RP + RT:(S+F+P)ˆ3)
# Alternative model S*F*P*RT + S:F:P:RP + RT:(S*F*P)
anova(bsfp)
# Error 2 is the reported Error
# Error 1 is S:F:P:RP.
# All whole plot F tests and t tests use the wrong Error.

coef=summary(bsfp)
coef

#Error 2 residual plots

par(mfrow=c(2,1))
qqnorm(rstudent(bsfp),ylab="Standardized residuals")
plot(bsfp$fit,rstudent(bsfp),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")

# Wilk-Francia
rankit=qnorm(ppoints(rstandard(bsfp),a=I(3/8)))
ys=sort(rstandard(bsfp))
Wprime=(cor(rankit,ys))**2
Wprime

par(mfrow=c(2,2))
plot(s,rstudent(bsfp),xlab="Surface Treatments",
ylab="Standardized residuals",main="Residual-Surface Treatments plot")
plot(f,rstudent(bsfp),xlab="Fills",
ylab="Standardized residuals",main="Residual-Fills plot")
plot(p,rstudent(bsfp),xlab="Proportions",
ylab="Standardized residuals",main="Residual-Proportions plot")
plot(rot,rstudent(bsfp),xlab="Rotations",



19.2 SPLIT PLOTS: ABRASION RESISTANCE 99

ylab="Standardized residuals",main="Residual-Rotations plot")

19.2.1 Interaction plots

abraid <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab19-6.dat",
sep="",col.names=c("y","s","f","p","rep","rot"))
attach(abraid)
abraid
summary(abraid)

S=factor(s)
F=factor(f)
P=factor(p)
RT=factor(rot)
RP=factor(rep)
p2=p*p
r2=rot*rot
bsfp <- lm(y ˜ S:F:P:RP + S:F:RT + p:rot + p:r2 + p2:rot + p2:r2)
anova(bsfp)

coef=summary(bsfp)
coef

ipy=bsfp$fit[s==1 & f==1 & rep==1]
ipp=p[s==1 & f==1 & rep==1]
iprot=rot[s==1 & f==1 & rep==1]
ip=c(ipp,iprot,ipy)
int=matrix(ip,9,3,dimnames = list(NULL,

c("p","rot","yhat")))
int

#Create a table of interaction effects
inter2=matrix(int[1:9,3],3,3)

test=c(1,2,3)
plot(test,inter2[1,],type="n",ylab="Fitted",ylim=c(140,270),
xaxt = "n", #frame = TRUE,
xlab="Rotations",lty=1,lwd=2,lab=c(5,6,7))
axis(1,at=c(1,2,3),labels=c("1000","2000","3000"))



100 19. DEPENDENT DATA

#axis(1, 1:4, LETTERS[1:4])
lines(test,inter2[1,],type="o",lty=1,lwd=2)
lines(test,inter2[2,],type="o",lty=2,lwd=2)
lines(test,inter2[3,],type="o",lty=3,lwd=2)
legend("bottomleft",c("Percent","25","50","75"),lty=c(NA,1,2,3))

19.2.2 Unbalanced subplots

The key is to have a separate effect for every whole plot, model the subplot main effects and inter-
actions as usual.

abwp <- lm(y ˜ S:F:P:RP + RT + RT:(S+F+P)ˆ3 )
coef=summary(abwp)
coef
anova(abwp)

19.2.3 Whole plot analysis with Error 1 residual plots

abraid <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab19-6a.dat",
sep="",col.names=c("yy1","yy2","yy3","s","f","p","rep"))
attach(abraid)
abraid
summary(abraid)

yw=(yy1+yy2+yy3)/3
#Summary tables
S=factor(s)
F=factor(f)
P=factor(p)
p2=p*p
bsfp <- lm(yw ˜ S:F:P-1)
coef=summary(bsfp)
coef
anova(bsfp)

bsfp <- lm(yw ˜ S:F:P-1)
par(mfrow=c(1,1))
qqnorm(rstudent(bsfp),ylab="Standardized residuals")
# Wilk-Francia
rankit=qnorm(ppoints(rstandard(bsfp),a=I(3/8)))
ys=sort(rstandard(bsfp))
Wprime=(cor(rankit,ys))**2
Wprime



19.2 SPLIT PLOTS: ABRASION RESISTANCE 101

par(mfrow=c(2,2))
plot(bsfp$fit,rstudent(bsfp),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")
plot(s,rstudent(bsfp),xlab="Surface Treatmens",
ylab="Standardized residuals",main="Residual-Surface Treatments plot")
plot(f,rstudent(bsfp),xlab="Fills",
ylab="Standardized residuals",main="Residual-Fills plot")
plot(p,rstudent(bsfp),xlab="Proportions",
ylab="Standardized residuals",main="Residual-Proportions plot")

Beyond the bottom of Table 19.12

abraid <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab19-6.dat",
sep="",col.names=c("y","s","f","p","rep","rot"))
attach(abraid)
abraid

S=factor(s)
F=factor(f)
P=factor(p)
p2=p*p
fb=f-1
fa=2-f
pa=p*fa
pa2=p*p*fa
pb=p*fb
pb2=p*p*fb
wsfp <- lm(y ˜ S:F + pa + pa2 + pb + pb2 -1)
anova(wsfp)
wsfp1 <- lm(y ˜ S:F + pa + pa2 + pb -1)
anova(wsfp1)
wsfp2 <- lm(y ˜ S:F + pa + pa2 -1)
anova(wsfp2)

19.2.4 Final models

abraid <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab19-6.dat",
sep="",col.names=c("y","s","f","p","rep","rot"))
attach(abraid)
abraid

mtilde = 2*rot/rot
mtilde = mtilde - (rot<2)

mtildea=mtilde[f==1]
mtildeb=mtilde[f==2]

ya = y[f==1]
sa = s[f==1]



102 19. DEPENDENT DATA

pa = p[f==1]
repa = rep[f==1]
rota = rot[f==1]

Mtildea=factor(mtildea)
Sa=factor(sa)
Pa=factor(pa)
RTa=factor(rota)
RPa=factor(repa)
p2a=pa*pa
r2a=rota*rota

bsfpa <- lm(ya ˜ Sa + pa + RTa + Sa:Mtildea)
anova(bsfpa)
coefa=summary(bsfpa)
coefa
bsfpa$fit

yb = y[f==2]
sb = s[f==2]
pb = p[f==2]
repb = rep[f==2]
rotb = rot[f==2]

Mtildeb=factor(mtildeb)
Sb=factor(sb)
Pb=factor(pb)
RTb=factor(rotb)
RPb=factor(repb)
p2b=pa*pb
r2b=rotb*rotb

bsfpb <- lm(yb ˜ Sb + RTb + Sb:Mtildeb)
anova(bsfpb)
coefb=summary(bsfpb)
coefb
bsfpb$fit

19.3 Multivariate ANOVA

The multivariate analysis presents terms that combine each whole plot term with its correspond-
ing subplot interaction. It is a simple matter to separate those back out into whole plot terms and
whole plot term by subplot term interactions. The whole plot terms will be equivalent to the cor-
responding split-plot whole plot analysis. The multivariate approach to looking at whole plot by
subplot interactions will not be equivalent to the corresponding split-plot analysis. Since these
issues are not discussed in the book, the R code is on my website in R Code for ALM-III at
http://www.stat.unm.edu/˜fletcher/R-ALMIII.pdf.

This illustration uses a different data file than that used for the split plot analysis. Near the end
we illustrate how ro construct the necessary data from the split plot data file.

http://www.stat.unm.edu/~fletcher/R-ALMIII.pdf


19.3 MULTIVARIATE ANOVA 103

rm(list = ls())
abraid <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab19-6a.dat",
sep="",col.names=c("yy1","yy2","yy3","s","f","p","rep"))
attach(abraid)
abraid

y=cbind(yy1,yy2,yy3)
y #y is a matrix with individual dependent variables as columns.

#Summary tables
S=factor(s)
F=factor(f)
P=factor(p)
p2=p*p
bsfp <- lm(y ˜ S*F*P)
coef=summary(bsfp)
coef

anova(bsfp,test = c("Wilks"))
anova(bsfp,test = c("Roy"))
anova(bsfp,test = c("Hotelling-Lawley"))
anova(bsfp) # Default is Pillai
anova(bsfp,test = c("Spherical")) #Similar to split plot analysis

# Nicer output comes from the "car" package.
library(car)
bsfp.manova=Manova(bsfp)
summary(bsfp.manova)
# To obtain the E and H(S*F*P) matrices, H(S*F*P) is the 7th of the H matrices,
bsfp.manova$SSPE
bsfp.manova$SSP[7]

par(mfrow=c(2,2))
qqnorm(rstudent(bsfp)[,1],ylab="Standardized residuals y1")
qqnorm(rstudent(bsfp)[,2],ylab="Standardized residuals y2")
qqnorm(rstudent(bsfp)[,3],ylab="Standardized residuals y3")

par(mfrow=c(2,2))
plot(bsfp$fit[,1],rstudent(bsfp)[,1],xlab="Fitted y1",
ylab="Standardized residuals y1",main="Residual-Fitted plot")
plot(bsfp$fit[,2],rstudent(bsfp)[,2],xlab="Fitted y2",
ylab="Standardized residuals y2",main="Residual-Fitted plot")
plot(bsfp$fit[,3],rstudent(bsfp)[,3],xlab="Fitted y3",
ylab="Standardized residuals y3",main="Residual-Fitted plot")

Constructing the MANOVA variables from the split plot variables. Notice that I have changed
the names of the effects being read in.

rm(list = ls())



104 19. DEPENDENT DATA

abraid <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab19-6.dat",
sep="",col.names=c("yy","surf","fill","prop","Rep","rot"))
attach(abraid)
abraid

yy1=yy[rot==1]
yy2=yy[rot==2]
yy3=yy[rot==3]
s=surf[rot==1]
f=fill[rot==1]
p=prop[rot==1]
rep=Rep[rot==1]

For the effects, e.g., f=fill[rot==3] would have worked just as well.

19.4 Random effects and subsampling

19.4.1 Subsampling

19.4.2 Random Effects

Our computations involve only the use of lm but the R library lme4 has a program lmer that deals
with quite general random effects models. The lmer estimates agree with the lm ideas for balanced
ANOVA problems but differ otherwise, cf. Christensen (2019). We illustrate both programs for the
computations on the balanced one-way random effects model of Example 19.4.1.

rm(list = ls())
elec <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\EX19-4-1.dat",
sep="",col.names=c("y","S"))
attach(elec)
elec

Strip = factor(S)
elec.lm <- lm(y ˜ Strip)
anova(elec.lm)

library(lme4)
elec.re <- lmer((y ˜ (1 | Strip)), data = elec)
summary(elec.re)

anova(elec.lm)
Df Sum Sq Mean Sq F value Pr(>F)

Strip 3 10.873 3.6242 6.4539 0.002327 **
Residuals 24 13.477 0.5615

The estimate in the book is

σ̃
2
A =

MSTrts−MSE
N

=
3.6242−0.5615

7
= 0.4375,

which is the Groups variance below. The Residual Variance below agrees with the Mean Sq Resid-
uals above.

> summary(elec.re)
Random effects:
Groups Name Variance Std.Dev.
Strip (Intercept) 0.4375 0.6615



19.4 RANDOM EFFECTS AND SUBSAMPLING 105

Residual 0.5615 0.7494
Number of obs: 28, groups: Strip, 4

Fixed effects:
Estimate Std. Error t value

(Intercept) 15.9964 0.3598 44.46





Chapter 20

Logistic Regression

20.1 Models for binomial data

20.2 Simple linear logistic regression

mice.sllr <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-1.dat",
sep="",col.names=c("x","Ny","N","y"))

attach(mice.sllr)
mice.sllr
summary(mice.sllr)

#Summary tables
mi <- glm(y ˜ x,family = binomial,weights=N)
mip=summary(mi)
mip
anova(mi)

rpearson=(y-mi$fit)/(mi$fit*(1-mi$fit)/N)ˆ(.5)
rstand=rpearson/(1-hatvalues(mi))ˆ(.5)
infv = c(y,mi$fit,hatvalues(mi),rpearson,

rstand,cooks.distance(mi))
inf=matrix(infv,I(mip$df[1]+mip$df[2]),6,dimnames = list(NULL,

c("y", "yhat", "lev","Pearson","Stand.","C")))
inf
# Note: delete y from table if it contains missing observations

#compute confidence intervals
R=mip$cov.unscaled
se <- sqrt(diag(R))
ci=c(mi$coef-qnorm(.975)*se, mi$coef+qnorm(.975)*se)
CI95 = matrix(ci,mip$df[1],2)
CI95

20.2.1 Goodness of fit tests

Don’t use the Hosmer-Lemeshow chi-squared test. Only use the Pearson and Likelihood ratio tests
if you have binomial data with all the Nis reasonably large!

20.2.2 Assessing predictive probabilities

If you want this stuff, use Minitab or SAS Proc Logistic.

107



108 20. LOGISTIC REGRESSION

20.2.3 Case diagnostics

These were provided with the earlier output.

20.3 Model testing

rm(list = ls())
mice.sllr <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-1.dat",

sep="",col.names=c("x","Ny","N","y"))
attach(mice.sllr)
mice.sllr
summary(mice.sllr)

#Summary tables
mi <- glm(y ˜ x,family = binomial,weights=N)
mip=summary(mi)
mip
mi3 <- glm(y ˜ x+I(xˆ2)+I(xˆ3),family = binomial,weights=N)
mi3p=summary(mi3)
mi3p
anova(mi,mi3)

Alternatively,
mi3 = glm(y poly(x, degree = 3, raw=TRUE),family = binomial,weights=N)
will give exactly the same results whereas
mi3 = glm(y poly(x, degree = 3),family = binomial,weights=N) fits or-
thogonal polynomials which lead to the same model tests but provide different estimates.

20.4 Fitting logistic models

20.5 Binary data

rm(list = ls())
oring.sllr <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-3.dat",

sep="",col.names=c("Case","Flt","y","s","x","no"))

attach(oring.sllr)
oring.sllr
#summary(oring.sllr)

#Summary tables
or <- glm(y ˜ x,family = binomial)
orp=summary(or)
orp
anova(or)

#prediction
new = data.frame(x=c(31,53))
predict(or,new,type="response")
rpearson=(y-or$fit)/(or$fit*(1-or$fit))ˆ(.5)
rstand=rpearson/(1-hatvalues(or))ˆ(.5)
infv = c(y,or$fit,hatvalues(or),rpearson,



20.6 MULTIPLE LOGISTIC REGRESSION 109

rstand,cooks.distance(or))
inf=matrix(infv,I(orp$df[1]+orp$df[2]),6,dimnames = list(NULL,

c("y", "yhat", "lev","Pearson","Stand.","C")))
inf
R2 = (cor(y,or$fit))**2
R2

20.5.1 Goodness of fit tests

Don’t use these for binary data!

20.5.2 Case diagnostics

Given by the earlier code.

20.5.3 Assessing predictive probabilities

If you want things other than R2, which was given earlier, use Minitab or SAS Proc Logistic.

20.6 Multiple logistic regression

Years ago software did not readily compute AIC so I used A− q ≡ AICq because it was easy to
compute by hand from the output d f and G2. In R, for a fitted model, say svm, the computation
is AICq=deviance(svm)-2*df.residual(svm). Now AIC is part of R’s standard output
and can be manipulated as AIC(svm). The key point to notice is that, for various models,
differences between R’s AIC agree with the corresponding differences between A−q, so they
lead to the same ordering of models.

rm(list = ls())
chap.mlr <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\chapman.dat",

sep="",col.names=c("Case","Ag","S","D","Ch","H","W","y"))

attach(chap.mlr)
chap.mlr
#summary(chap.mlr)

#Summary tables
cm <- glm(y ˜ Ag+S+D+Ch+H+W,family = binomial)
cmp=summary(cm)
cmp
anova(cm)

# Diagnostics
rpearson=(y-cm$fit)/(cm$fit*(1-cm$fit))ˆ(.5)
rstand=rpearson/(1-hatvalues(cm))ˆ(.5)
infv = c(y,cm$fit,hatvalues(cm),rpearson,

rstand,cooks.distance(cm))
inf=matrix(infv,I(cmp$df[1]+cmp$df[2]),6,dimnames = list(NULL,

c("y", "yhat", "lev","Pearson","Stand.","C")))
inf



110 20. LOGISTIC REGRESSION

20.6.1 Best subset logistic regression

This isn’t in the book.
Below is the method discussed in Christensen (1997, Section 4.4, Log-linear Models and Logis-

tic Regression). The method starts with the full model and performs only one step of the Newton-
Raphson/Iteratively Reweighted Least Squares algorithm to determine the best models. This is a far
better procedure than the score test method used by SAS Proc Logistic because it starts from the
full model, which should be a good model, rather than the intercept only model used by the score
test.

rm(list = ls())
chap <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\chapman.dat",

sep="",col.names=c("Case","Ag","S","D","Ch","H","W","y"))
attach(chap)
chap
summary(chap)

#Summary tables
ch = glm(y ˜ Ag+S+D+Ch+H+W,family=binomial)
chp=summary(ch)
chp
#anova(ch)

rwt=ch$fit*(1-ch$fit)
yy=log(ch$fit/(1-ch$fit))+(y-ch$fit)/rwt
# If Bin(n_i,p_i)s have n_i different from 1, multiply
# rwt and second term in yy by by n_i

ch1 <- lm(yy ˜ Ag+S+D+Ch+H+W,weights=rwt)
ch1p=summary(ch1)
ch1p
anova(ch1)
# Note the agreement between the glm and lm fits!!!

#install.packages("leaps")
library(leaps)
x <- model.matrix(ch1)[,-1]
g <- regsubsets(x,yy,nbest=3,weights=rwt)

# assign number of best models and number of predictor variables.
nb=3
xp=ch1p$df[1]-1
dfe=length(y)- 1- c(rep(1:(xp-1),each=nb),xp)
g <- regsubsets(x,yy,nbest=nb,weights=rtw)
gg = summary(g)
tt=c(gg$rsq,gg$adjr2,gg$cp,sqrt(gg$rss/dfe))
tt1=matrix(tt,nb*(xp-1)+1,4,
dimnames = list(NULL,c("R2", "AdjR2", "Cp", "RootMSE")))

tab1=data.frame(tt1,gg$outmat)
tab1

Another possible source for best subset logistic regression is the package/program bestglm



20.7 ANOVA MODELS 111

which seems to do full, rather than one-step, fits of the models, cf. also the glmulti pack-
age/program of Calcagno and de Mazancourt (2010). The package StepReg has a program
stepwiseLogit that behaves similar to their stepwise for linear models. I would be wor-
ried about whether the selection=”score” option performs one-step approximations based on the
intercept only model rather (like SAS) than the full model as illustrated here.

Calcagno, Vincent and de Mazancourt, Claire (2010). glmulti: An R Package for Easy Auto-
mated Model Selection with (Generalized) Linear Models, Journal of Statistical Software, Volume
34, Issue 12.

20.6.2 Stepwise logistic regression

This chooses models based on the AIC criterion. As illustrated earlier, obtain the glm output.

ch = glm(y ˜ Ag+S+D+Ch+H+W,family=binomial)
chstep <- step(ch, direction="backward")
chstep

Other “directions” include both and forward but forward requires additional commands, see
Section 10.3. You get similar results by replacing the glm output in ch with the lm output from
ch1 = lm(yy Ag+S+D+Ch+H+W,weights=rtw).

Haven’t run yet. The package StepReg’s stepwiseLogit program allows stepping based
on P values of G2, e.g., step(ch, selection=”backward”,select=”SL”,sls=0.05,sigMethod=”LRT”). I
would guess that when sls is specified, telling it to use significance levels,select="SL", would
be redundant but I haven’t checked. In its description it says that it allows Wald [β̂/SE(β̂ )] and
score tests but the options are for G2 and score tests.

20.7 ANOVA models

tense <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-10.dat",
sep="",col.names=c("High","Low","Wt","Ms","Dr"))

attach(tense)
tense
#summary(tense)

W=factor(Wt)
M=factor(Ms)
D=factor(Dr)
T=cbind(High,Low)
ts <- glm(T ˜ W*M + M*D,family = binomial)
tsp=summary(ts)
tsp
anova(ts)

20.8 Ordered categories

rm(list = ls())
abop <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-15.dat",

sep="",col.names=c("Case","Race","Sex","Age","Yes","No","Total"))



112 20. LOGISTIC REGRESSION

attach(abop)
abop
#summary(abop)

#Summary tables
R=factor(Race)
S=factor(Sex)
A=factor(Age)
y=Yes/Total
# Model (20.8.1)
ab <- glm(y ˜ R:S + A,family = binomial,weights=Total)
abp=summary(ab)
abp

odds=ab$fit/(1-ab$fit)
odds

# Model (20.8.2)
ab <- glm(y ˜ R:S + Age,family = binomial,weights=Total)
abp=summary(ab)
abp

# Model (20.8.3)
Men=Race*(Sex-1)
m=factor(Men)
ab <- glm(y ˜ m + A,family = binomial,weights=Total)
abp=summary(ab)
abp

# Model (20.8.4)
ab <- glm(y ˜ m + Age,family = binomial,weights=Total)
abp=summary(ab)
abp

odds=ab$fit/(1-ab$fit)
oddstable=matrix(odds,6,4,dimnames = list(NULL,

c("Male", " White Female", " Male"," Nonwhite Female")))
oddstable



Chapter 21

Log-Linear Models

The generalized linear model procedure glm uses Newton-Raphson (iteratively reweighted least
squares)? [The output refers to it as Fisher Scoring.] To use iterative proportional fitting use

library(MASS)
loglm(y ˜ model)

Within R, the likelihood ratio chi-square G2 is labeled as the residual deviance.

21.1 Models for two-factor tables

We now use log-linear models to reproduce results from the Chapter 5.

rm(list = ls())
occ <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab21-3.dat",

sep="",col.names=c("y","R","O","RCP","Q"))
# Early versions have tab21-2.dat identical to tab21-3.dat
# wherein tab21-2.dat has two unnecessary columns.
# Until the next subsection, ignore the variables RCP and Q!
attach(occ)
occ
#summary(occ)

#Summary tables
r=factor(R)
o=factor(O)
ts <- glm(y ˜ r + o,family = poisson)
tsp=summary(ts)
tsp
anova(ts)

rpearson=(y-ts$fit)/(ts$fit)ˆ(.5)
rstand=rpearson/(1-hatvalues(ts))ˆ(.5)
infv = c(y,ts$fit,hatvalues(ts),rpearson,

rstand,cooks.distance(ts))
inf=matrix(infv,I(tsp$df[1]+tsp$df[2]),6,dimnames = list(NULL,

c("y", "yhat", "lev","Pearson","Stand.","C")))
inf

#prediction
#new = data.frame(r=c("1"),o=c("1"))
#predict(ts,new,type="response")

113



114 21. LOG-LINEAR MODELS

21.1.1 Lancaster-Irwin Partitioning

We begin by reproducing the independence/homogeneity analysis for the full table using two new
variables one of which collapses the Roman Catholics and Protestants but identifies the other vari-
ables and another that identifies Catholics and Protestants but collapses the other variables. In this
example, there is only one other variable, so nothing to collapse.

rm(list = ls())
occ <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab21-3.dat",

sep="",col.names=c("y","R","O","RCP","Q"))
# RCP lumps Roman Catholics and Protestants together
# Q distinguishes between Roman Catholics and Protestants
attach(occ)
occ
#summary(occ)

#Reproduce the independence/homogeneity analysis using RCP and Q

r=factor(R)
o=factor(O)
rcp=factor(RCP)
q=factor(Q)
ts2 <- glm(y ˜ o + rcp:q,family = poisson)
tsp2=summary(ts2)
tsp2

rpearson=(y-ts2$fit)/(ts2$fit)ˆ(.5)
rstand=rpearson/(1-hatvalues(ts2))ˆ(.5)
infv = c(y,ts2$fit,hatvalues(ts2),rpearson,

rstand,cooks.distance(ts2))
inf=matrix(infv,I(tsp2$df[1]+tsp2$df[2]),6,dimnames = list(NULL,

c("y", "yhat", "lev","Pearson","Stand.","C")))
inf

You can check to see that y, yhat, and Pearson all agree with the earlier analysis.
We now fit a model to the entire data that fits independence/homegeneity to the reduced table

while fitting the other cells perfectly. The G2 (residual deviance) for this model is that for the reduced
model.

ts3 <- glm(y ˜ o:rcp + rcp:q,family = poisson)
tsp3=summary(ts3)
tsp3

rpearson=(y-ts3$fit)/(ts3$fit)ˆ(.5)
rstand=rpearson/(1-hatvalues(ts3))ˆ(.5)
infv = c(y,ts3$fit,hatvalues(ts3),rpearson,

rstand,cooks.distance(ts3))
inf=matrix(infv,I(tsp3$df[1]+tsp3$df[2]),6,dimnames = list(NULL,

c("y", "yhat", "lev","Pearson","Stand.","C")))
inf
anova(ts2,ts3)

The difference between the full model G2 and the reduced model G2 gives the G2 for the col-



21.2 MODELS FOR THREE-FACTOR TABLES 115

lapsed table. The degrees of freedom are also found by subtraction. The anova command gives all
three of the relevant test statistics.

21.2 Models for three-factor tables

21.2.1 Testing models

EXAMPLE 21.2.1
rm(list = ls())
per <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab21-1.dat",

sep="",col.names=c("P","C","B","y"))

attach(per)
per
#summary(per)
p=factor(P)
c=factor(C)
b=factor(B)
m7 <- glm(y ˜ p:c + p:b + c:b,family = poisson)
m7s=summary(m7)
m6 <- glm(y ˜ p:c + p:b,family = poisson)
m6s=summary(m6)
m5 <- glm(y ˜ p:c + c:b,family = poisson)
m5s=summary(m5)
m4 <- glm(y ˜ p:b + c:b,family = poisson)
m4s=summary(m4)
m3 <- glm(y ˜ p + c:b,family = poisson)
m3s=summary(m3)
m2 <- glm(y ˜ c + p:b,family = poisson)
m2s=summary(m2)
m1 <- glm(y ˜ p:c + b,family = poisson)
m1s=summary(m1)
m0 <- glm(y ˜ p + c + b,family = poisson)
m0s=summary(m0)
df=c(m7$df.residual,m6$df.residual,m5$df.residual,m4$df.residual,

m3$df.residual,m2$df.residual,m1$df.residual,m0$df.residual)
G2=c(m7$deviance,m6$deviance,m5$deviance,m4$deviance,

m3$deviance,m2$deviance,m1$deviance,m0$deviance)
A2q=G2-(2*df)
modelm=c(df,G2,A2q)
model=matrix(modelm,8,3,dimnames = list(NULL,c("df", "G2", "A2q")))
model

21.3 Estimation and odds ratios

EXAMPLE 21.3.1 Auto accident injuries.
rm(list = ls())
sb <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\EX21-3-1.dat",

sep="",col.names=c("nuLL","i","j","k","y"))

attach(sb)



116 21. LOG-LINEAR MODELS

per
#summary(sb)
I=factor(i)
J=factor(j)
K=factor(k)
m7 <- glm(y ˜ I:J + I:K + J:K,family = poisson)
m7s=summary(m7)

rpearson=(y-m7$fit)/(m7$fit)ˆ(.5)
rstand=rpearson/(1-hatvalues(m7))ˆ(.5)
infv = c(y,m7$fit,hatvalues(m7),rpearson,rstand,

cooks.distance(m7))
inf=matrix(infv,I(m7s$df[1]+m7s$df[2]),6,dimnames = list(NULL,

c("y", "yhat", "lev","Pearson","Stand.","C")))
inf

EXAMPLE 21.3.2 Classroom behavior.

rm(list = ls())
sb <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\EX21-3-2.dat",

sep="",col.names=c("y","i","j","k"))

attach(sb)
per
#summary(sb)
I=factor(i)
J=factor(j)
K=factor(k)
m7 <- glm(y ˜ I + J:K,family = poisson)
m7s=summary(m7)

rpearson=(y-m7$fit)/(m7$fit)ˆ(.5)
rstand=rpearson/(1-hatvalues(m7))ˆ(.5)
infv = c(y,m7$fit,hatvalues(m7),rpearson,rstand,

cooks.distance(m7))
inf=matrix(infv,I(m7s$df[1]+m7s$df[2]),6,dimnames = list(NULL,

c("y", "yhat", "lev","Pearson","Stand.","C")))
inf

21.4 Higher dimensional tables

Muscle tension changes.

rm(list = ls())
tense <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-10a.dat",

sep="",col.names=c("y","Tn","Wt","Ms","Dr"))
attach(tense)
tense
#summary(tense)

W=factor(Wt)



21.5 ORDERED CATEGORIES 117

M=factor(Ms)
D=factor(Dr)
T=factor(Tn)
m7 <- glm(y ˜ T:W:M + T:W:D + T:M:D + W:M:D,family = poisson)
m4 <- glm(y ˜ T:W + T:M + T:D + W:M + W:D + M:D,family = poisson)
m0 <- glm(y ˜ T + W + M + D,family = poisson)

df=c(m7$df.residual,m4$df.residual,m0$df.residual)
G2=c(m7$deviance,m4$deviance,m0$deviance)
A2q=G2-(2*df)
modelm=c(df,G2,A2q)
model=matrix(modelm,3,3,dimnames = list(NULL,c("df", "G2", "A2q")))
model

You can also get the key statistics from the following commands

m7 <- glm(y ˜ T*W*M + T*W*D + T*M*D + W*M*D,family = poisson)
m7p=summary(m7)
m7p
anova(m7)

What you want is in the last 2 columns. R is fitting the models sequentially, adding in each term on
the left.

21.5 Ordered categories

EXAMPLE 21.5.1
rm(list = ls())
abt <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\EX21-5-1.DAT",

sep="",col.names=c("c","p","y"))
attach(abt)
abt

C=factor(c)
P=factor(p)
m3 <- glm(y ˜ C + P + C:p,family = poisson) #[C][P][C_1]
m2 <- glm(y ˜ C + P + c:P,family = poisson) #[C][P][P_1]
m1 <- glm(y ˜ C + P + c:p,family = poisson) #[C][P][gamma]
m0 <- glm(y ˜ C + P,family = poisson) #[C][P]
df=c(m3$df.residual,m2$df.residual,m1$df.residual,m0$df.residual)
G2=c(m3$deviance,m2$deviance,m1$deviance,m0$deviance)
A2q=G2-(2*df)
modelm=c(df,G2,A2q)
model=matrix(modelm,4,3,dimnames = list(NULL,c("df", "G2", "A2q")))
model

m1s=summary(m1)
m1s
anova(m1)

rpearson=(y-m1$fit)/(m1$fit)ˆ(.5)



118 21. LOG-LINEAR MODELS

rstand=rpearson/(1-hatvalues(m1))ˆ(.5)
infv = c(y,m1$fit,hatvalues(m1),rpearson,rstand,

cooks.distance(m1))
inf=matrix(infv,I(m1s$df[1]+m1s$df[2]),6,dimnames = list(NULL,

c("y", "yhat", "lev","Pearson","Stand.","C")))
inf

EXAMPLE 21.5.2

rm(list = ls())
abt <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\TAB21-4.DAT",

sep="",col.names=c("R","S","A","O","y"))
attach(abt)
abt
#summary(abt)

r=factor(R)
o=factor(O)
s=factor(S)
a=factor(A)
A2=A*A
#[RSO][OA]
ab <- glm(y ˜ r:s:o + o:a ,family = poisson)
abp=summary(ab)
abp
anova(ab)

#[RSO][A][O_1][O_2]
ab2 <- glm(y ˜ r:s:o + a + o:A + o:A2,family = poisson)
abp2=summary(ab2)
abp2
anova(ab2)

#[RSO][A][O_1]
ab3 <- glm(y ˜ r:s:o + a + o:A ,family = poisson)
abp3=summary(ab3)
abp3
anova(ab3)

rpearson=(y-ab3$fit)/(ab3$fit)ˆ(.5)
rstand=rpearson/(1-hatvalues(ab3))ˆ(.5)
infv = c(y,ab3$fit,hatvalues(ab3),rpearson,

rstand,cooks.distance(ab3))
inf=matrix(infv,I(abp3$df[1]+abp3$df[2]),6,dimnames = list(NULL,

c("y", "yhat", "lev","Pearson","Stand.","C")))
inf

21.6 Offsets

bis <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\TAB21-5.DAT",
sep="",col.names=c("index","l","y"))

attach(bis)



21.7 RELATION TO LOGISTIC MODELS 119

bis
ll=log(l)
ab2 <- glm(y ˜ ll ,family = poisson)
abp2=summary(ab2)
abp2
ab3 <- glm(y ˜ offset(ll) ,family = poisson)
abp3=summary(ab3)
abp3
anova(ab3)

21.7 Relation to logistic models

There is no computing associated with this section.

21.8 Multinomial responses

21.9 Logistic discrimination and allocation

The first thing we have to do is create the 3×21 table illustrated in the book. We then fit the model
and finally we get the entries for the book’s Tables 21.11 and 21.12.

rm(list = ls())
cush <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\TAB21-11.DAT",

sep="",col.names=c("Syn","Tetra","Preg"))
attach(cush)
cush

#Create a 3 x 21 table of 0-1 entries,
#each row has 1’s for a different type of syndrome
j=rep(seq(1,21),3)
i=c(rep(1,21),rep(2,21),rep(3,21))
Tet=c(Tetra,Tetra,Tetra)
Pre=c(Preg,Preg,Preg)
y=c(Syn,Syn,Syn)
y[1:6]=1
y[7:21]=0
y[22:27]=0
y[28:37]=1
y[38:58]=0
y[59:63]=1
datal=c(y,i,j,Tet,Pre)
datl=matrix(datal,63,5,dimnames = list(NULL,c("y", "i", "j","Tet","Pre")))
datl

#Fit the log-linear model for logistic discrimination.
i=factor(i)
j=factor(j)
lp=log(Pre)
lt=log(Tet)
ld <- glm(y ˜ i + j + i:lt +i:lp ,family = poisson)
ldp=summary(ld)
ldp
anova(ld)



120 21. LOG-LINEAR MODELS

# Table 21.12
q=ld$fit
# Divide by sample sizes
p1=ld$fit[1:21]/6
p2=ld$fit[22:42]/10
p3=ld$fit[43:63]/5
# Produce table
estprob = c(Syn,p1,p2,p3)
EstProb=matrix(estprob,21,4,dimnames = list(NULL,c("Group", "A", "B","C")))
EstProb

# Table 21.13 Proportional prior probabilities.
post = c(Syn,ld$fit)
PropProb=matrix(post,21,4,dimnames = list(NULL,c("Group", "A", "B","C")))
PropProb

# Table 21.13 Equal prior probabilities.
p=p1+p2+p3
pp1=p1/p
pp2=p2/p
pp3=p3/p
post = c(Syn,pp1,pp2,pp3)
EqProb=matrix(post,21,4,dimnames = list(NULL,c("Group", "A", "B","C")))
EqProb



Chapter 22

Exponential and Gamma Regression: Time to
Event Data

22.1 Exponential regression

fz <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab22-1.dat",
sep="",col.names=c("y","WBC","AG"))
attach(fz)
fz
#summary(fz)

a=factor(AG)
lw=log10(WBC)
er <- glm(y˜a+lw-1, family=Gamma(link="log"))
erp=summary(er,dispersion=1)
erp
anova(er)
mpar(2,2)
plot(er)

confit(er)
#compute confidence intervals
R=erp$cov.unscaled
se <- sqrt(diag(R)) * erp$sigma
ci = c(er$coef - qt(.975,erp$df[2])*se,er$coef + qt(.975,erp$df[2])*se)
CI95 = matrix(ci,erp$df[1],2)
CI95

#Test nu1=2nu2

a=factor(AG)
NAG=3-AG
lw=log10(WBC)
er <- glm(y˜NAG+lw:a-1, family=Gamma(link="log"))
erp=summary(er,dispersion=1)
erp

#COMPUTING ISSUES

121



122 22. EXPONENTIAL AND GAMMA REGRESSION: TIME TO EVENT DATA

a=AG-1
lw=log10(WBC)
er <- glm(y˜a+lw+lw:a, family=Gamma(link="log"))
erp=summary(er,dispersion=1)
erp

22.2 Gamma regression

fz <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab22-1.dat",
sep="",col.names=c("y","WBC","AG"))
attach(fz)
fz
#summary(fz)

#Summary tables
a=factor(AG)
lw=log10(WBC)
er <- glm(y˜a+lw:a-1, family=Gamma(link="log"))
erp=summary(er)
erp

anova(er)
plot(er)

#COMPUTING ISSUES

a=AG-1

er <- glm(y˜a+lw+lw:a, family=Gamma(link="log"))
erp=summary(er)
erp

22.2.1 Offsets

Test ACOVA slope of 1.

fz <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab22-1.dat",
sep="",col.names=c("y","WBC","AG"))
attach(fz)
fz
#summary(fz)

a=factor(AG)
lw=log10(WBC)
er <- glm(y˜a+offset(-1*lw), family=Gamma(link="log"))
erp=summary(er)



22.2 GAMMA REGRESSION 123

erp

anova(er)





Chapter 23

Nonlinear Regression

See also nlstools.

23.1 Using nls

rm(list = ls())
bz <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab23-1.dat",
sep="",col.names=c("x1","x2","T","x4","r"))
attach(bz)
bz
#summary(bz)

y <- 100/r
x3=(1/T)-(1/648)

mlf1 <- nls(y ˜ exp(b0 + b1*x3) *(1/x2) + exp( b2 + b3*x3) *(x4/x1),
start=list(b0 = 1.3130, b1 = 11908, b2 = -0.23463, b3 = 10559.5),
trace=T)
mlf1p <- summary(mlf1)
mlf1p
confint(mlf1, level=0.95)

mlf1 <- nls(y ˜ exp(b0 + b1*x3) *(1/x2) + exp( b2 + b3*x3) *(x4/x1),
start=list(b0 = 1, b1 = 10000, b2 = 1, b3 = 10000),
trace=T)
mlf1p <- summary(mlf1)
mlf1p
confint(mlf1, level=0.95)

23.2 Linearized models

rm(list = ls())
bz <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab23-1.dat",
sep="",col.names=c("x1","x2","T","x4","r"))
attach(bz)

125



126 23. NONLINEAR REGRESSION

bz
#summary(bz)

y <- 100/r
x3=(1/T)-(1/648)
b0 <- 1.3130
b1 <- 11908
b2 <- -0.23463
b3 <- 10559.5

Fb <- exp(b0 + b1*x3) *(1/x2) + exp( b2 + b3*x3) *(x4/x1)
dFb0 <- exp(b0 + b1*x3) *(1/x2)
dFb1 <- exp(b0 + b1*x3) *(x3/x2)
dFb2 <- exp( b2 + b3*x3) *(x4/x1)
dFb3 <- exp( b2 + b3*x3) *x3*(x4/x1)
Zb = b0 * dFb0 + b1 * dFb1 + b2 * dFb2 + b3 * dFb3
yy = y - Fb + Zb
y
Fb
Zb
yy
mlf = lm(yy ˜ dFb0 + dFb1 + dFb2 + dFb3 - 1)
zstar= model.matrix(mlf)
zstar
mlfp <- summary(mlf)
mlfp
confint(mlf, level=0.95)

qqnorm(rstandard(mlf),ylab="Standardized residuals")
rankit=qnorm(ppoints(rstandard(mlf),a=I(3/8)))
ys=sort(rstandard(mlf))
Wprime=(cor(rankit,ys))**2
Wprime

par(mfrow=c(2,1))
plot(mlf$fit,rstandard(mlf),xlab="dhat",
ylab="Standardized residuals",main="Residual-dhat plot")
plot(Fb,rstandard(mlf),xlab="yhat",
ylab="Standardized residuals",main="Residual-yhat plot")

par(mfrow=c(2,2))
plot(x1,rstandard(mlf),xlab="x1",ylab="Standardized residuals",

main="Residual-x1 plot")
plot(x2,rstandard(mlf),xlab="x2",ylab="Standardized residuals",

main="Residual-x2 plot")
plot(T,rstandard(mlf),xlab="x3",ylab="Standardized residuals",



23.2 LINEARIZED MODELS 127

main="Residual-T plot")
plot(x4,rstandard(mlf),xlab="x4",ylab="Standardized residuals",

main="Residual-x4 plot")

infv = c(y-Fb,mlf$fit,hatvalues(mlf),rstandard(mlf),rstudent(mlf),
cooks.distance(mlf))

inf=matrix(infv,I(mlfp$df[1]+mlfp$df[2]),6,dimnames = list(NULL,
c("y", "yhat", "lev","r","t","C")))

inf

index = seq(1,54)
par(mfrow=c(2,1))
plot(index,hatvalues(mlf),xlab="Index",

ylab="Leverage",main="Leverage plot")
plot(index,cooks.distance(mlf),xlab="Index",

ylab="Cook’s Distance",main="Cook’s distance plot")





Appendix A: Matrices and Vectors

Commands for matrix algebra where given at the beginning of Chapter 11.

A.8 Eigenvalues and vectors

Eigenvalues and eigenvectors were discussed in Appendix Section A.8. We now perform principal
component regression using eigen.
Z=coleman[,2:6] #Define predictor matrix from data frame
e <- eigen(cor(Z),symmetric=TRUE)
e$values
e$vectors
Zs <- scale(Z) #Centers and scales the matrix Z
PC <- Zs %*% e$vec #Matrix of principal component scores
co <- lm(y ˜ PC)
cop = summary(co)
cop
anova(co)

Proposition A.8.2 presented the singular value decomposition. The presentation was for a ma-
trix A that was symmetric however the R function works for nonsymmetric matrices. When A is
symmetric, P = PP below. The following code reproduces Example A.8.3.
A = matrix(c(3,1,-1,1,3,-1,-1,-1,5),ncol=3)
dc <- svd(A)
phi <- dc$d
phi
D <- diag(phi)
P <- dc$u
P
PP <- dc$v
PP
P %*% D %*% t(PP) # A = P D P’
t(PP) %*% A %*% P # D = P’ A P

As in the book, the eigenvalues in phi are 6, 3, 2. The columns of P and PP are decimal represen-
tations of those in the book.

129





Chapter 24

More Stuff

oakes <- read.table("C:\\E-drive\\AmericanStatistician\\oakes.dat",
sep="",col.names=c("n","i","j"))

attach(oakes)
oakes
#summary(oaks)

#Summary tables
I=factor(i)
J=factor(j)
oak <- glm(n ˜ I + J + I*j,family = poisson)
oak
anova(oak)

131





Index

A−q vs AIC, 109
G2, 113
.csv, 2
ˆ, ix
˜, ix

A-q vs AIC, 109
AIC vs A−q, 109
AIC vs A-q, 109
anova, 11
ANOVA table, 12
ANOVA table, three line, 12, 58
aov, 12, 97

Box-Tidwell, 37
Breusch-Pagan test for heterogeneity, 35

caret
copying problem, ix

categorical variables, 11
classification variables, 11
clear workspace, 3
column names, 2
comma separated values, 2
confidence intervals, computing, 6
continuous variables, 11
Cook-Weisberg test for heterogeneity, 35
copying commands

problems, ix
correlation matrix, 48
csv, 2

deleting cases, 5, 6
discrete variables, 11
Durbin-Watson test for serial correlation, 35

eigenvalues, 129
eigenvectors, 129

factor variables, 11
for loop, 3

getting started, 1

help, 3

inner product, 57
inprod, 57

lm, 11, 12
lmer, 97

MASS, 52
measurement variables, 11
missing data, 5, 6

offset, 5, 15
orthogonal polynomials, 39
outer product, 57

read data, 2
read.table, 2
recoding factors, 89
rescaling, 53
residual deviance, 113

scaling, 53
simulation, 3
singular value decomposition, 129
standardized variables, 53, 59
step, 52
stepAIC, 52, 85
stepAIC

MASS, 81
subtracting model terms, 14, 20

table of coefficients, 12
three line ANOVA table, 12, 58
tilde

copying problem, ix

variance estimation, 8

Z- TO DO, 37, 45, 49, 64, 67

133


	Preface
	Table of Contents
	Introduction
	Getting started
	Plots and probabilities
	Reading data
	Elementary transformations
	Housekeeping
	Libraries/Packages

	One-Sample
	Introduction
	Parametric inference
	Test =10
	Confidence intervals
	P values

	Prediction
	Model testing
	Normal plots
	Shapiro-Francia test

	Elementary transformations
	Inference about 

	Defining Linear Models
	One sample
	Two samples
	Regression
	Simple linear regression
	Polynomial regression
	Multiple regression
	Offsets

	ANOVA
	One-way ANOVA
	Two-way ANOVA
	Interaction
	Additive effects
	Sequential fitting


	ACOVA and interaction
	ACOVA: parallel lines
	Interaction: skew lines

	Interaction in multiple regression
	Hierarchical and nested models
	Higher-order models

	Two Samples
	Two correlated samples: paired comparisons
	Two independent samples with equal variances
	Two independent samples with unequal variances
	Testing equality of the variances

	Contingency Tables
	One binomial sample
	Sign test

	Two independent binomial samples
	One multinomial sample
	Two independent multinomial samples
	Several independent multinomial samples
	Lancaster–Irwin partitioning

	Simple Linear Regression
	An alternative model
	Correlation
	Two-sample problems
	Multiple Regression

	Model Checking
	Recognizing randomness
	Checking Assumptions
	Another example: Hooker data
	Outliers: Coleman data
	Effects of high leverage

	Transformations
	Circle of transformations
	Box-Cox transformations
	Constructed variables

	Extras

	Lack of Fit and Nonparametric Regression
	Polynomial regression
	Picking a polynomial
	Orthogonal Polynomials

	Exploring the chosen polynomial

	Polynomial regression and leverages
	Other basis functions
	Sines and cosines
	Haar wavelets

	Partitioning methods
	Utts' method

	Splines
	Fisher's test

	Multiple Regression and Diagnostics
	Basic commands
	More on model testing
	Generalized additive models
	Other useful tools?


	Diagnostics and Variable Selection
	Diagnostics
	Best subsets
	Stepwise methods
	Model selection and case deletion
	Lasso
	Pollution data
	Cross-validation for tuning parameter


	Multiple Regression: Matrix Formulation
	Principal component regression

	One-Way ANOVA
	Suicide data
	Regression analysis of ANOVA data
	Modeling contrasts
	One-Way ANOVA and polynomial regression
	Fisher's lack-of-fit test
	Figures

	Weighted least squares
	Unbalanced weights
	Nondiagonal case


	Multiple Comparisons
	``Fisher's'' LSD
	Bonferroni adjustments
	Scheffé's method
	Studentized range methods
	Honest John's significant difference


	Two-Way ANOVA
	Unbalanced Two-way ANOVA
	Modeling contrasts
	Nonequivalence of Tests

	Regression modeling
	Homologous factors
	Symmetric additive effects
	Skew symmetric additive effects
	Symmetry


	ACOVA and Interactions
	One covariate example
	Regression modeling
	ACOVA and two-way ANOVA
	Near replicate lack-or-fit tests

	Multifactor Structures
	Unbalanced Three-way: Moisture data
	Computing

	Balanced three-way: Abrasion resistance data
	Higher order structures

	Basic Experimental Designs
	Randomized complete block designs
	Paired comparisons

	Latin squares
	Balanced incomplete blocks
	Youden squares

	Factorial Treatments
	
	RCB Analysis
	Interaction in a Latin square
	A balanced incomplete block design
	Extensions of Latin Squares

	Dependent Data
	Split plots
	Whole plot analysis
	Interaction plots

	Split plots: abrasion resistance
	Interaction plots
	Unbalanced subplots
	Whole plot analysis with Error 1 residual plots
	Final models

	Multivariate ANOVA
	Random effects and subsampling
	Subsampling
	Random Effects


	Logistic Regression
	Models for binomial data
	Simple linear logistic regression
	Goodness of fit tests
	Assessing predictive probabilities
	Case diagnostics

	Model testing
	Fitting logistic models
	Binary data
	Goodness of fit tests
	Case diagnostics
	Assessing predictive probabilities

	Multiple logistic regression
	Best subset logistic regression
	Stepwise logistic regression

	ANOVA models
	Ordered categories

	Log-Linear Models
	Models for two-factor tables
	Lancaster-Irwin Partitioning

	Models for three-factor tables
	Testing models

	Estimation and odds ratios
	Higher dimensional tables
	Ordered categories
	Offsets
	Relation to logistic models
	Multinomial responses
	Logistic discrimination and allocation

	Exponential and Gamma Regression: Time to Event Data
	Exponential regression
	Gamma regression
	Offsets


	Nonlinear Regression
	Using nls
	Linearized models

	Appendix A: Matrices and Vectors
	Eigenvalues and vectors

	More Stuff
	Index

