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Abstract

Zhu and Bradic (2017) presented methods for testing a one-dimensional linear hypothesis

in linear models that have p >> n. Their statistics take the form of t statistics with asymptotic

normal distributions. To deal with p >> n, strong additional assumptions have to be made

beyond those made for traditional linear models. One assumption they make is that of a

random design.

I present alternative formulations of their problems that suggest some attractive alterna-

tives to the numerators in their statistics and some clearly superior denominators. I also

present some approaches for nonrandom designs while drawing attention to the strong ad-

ditional assumptions required to solve the problem.
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1 Introduction

Zhu and Bradic (2017) (henceforward ZB) consider the problem of fitting a linear model

yi = x′iβ∗ + εi, E(εi) = 0, Var(εi) = σ2
ε , i = 1, . . . , n

with (presumably) iid errors and testing an hypothesis

a′β∗ = g0.

Here the xi and a vectors are p dimensional and ZB are primarily concerned with p >> n.

Rewrite the linear model in matrix form as

Y = Xβ∗ + e, E(e) = 0, Cov(e) = σ2
εI

with

Y =


y1
...

yn

 , X =


x′1
...

x′n

 , e =


ε1
...

εn


The solution to the testing problem is well-known in linear model theory, cf. Christensen

(2011, Chapter 3). If a′β∗ is estimable, the result is straight-forward and if a′β∗ is not estimable,

without making additional assumptions the problem is nonsensical. This is true regardless of the

sizes of p and n. When p >> n, the p-dimensional vectors a defining an estimable function are

restricted to a subspace of Rp with dimension rank(X) ≤ n << p, so the estimability restriction

is considerable. I will return to this issue in Sections 3 and 4. While ZB do an extensive literature

review, they do not cite any books on linear model theory.

ZB consider a random design setting with E(xi) = 0 and Cov(xi) = ΣX . They implicitly

assume that the εis are independent of the xis and that ΣX is positive definite. (They write ΣX ≡

Ω−1 but I will not use the Ω notation.) Note that in this random design model, unconditionally
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we must have E(yi) = 0. It is not hard to deal with the more general cases having E(xi) = µX

and E(yi) = µY , you merely include an intercept in the model and then do all the computations

after subtracting the sample means. ZB’s tests are not conditional on the xis, as typical linear

model tests are.

Because of the estimability issue, it has been clear to me for about 25 years, when I was first

introduced to multivariate calibration problems (e.g., Fugate et al. 2002), that to deal effectively

with p >> n one needs more information than is available in a standard linear model. In partic-

ular, the most fruitful path seems to be having some kind of model for ΣX . In their Section 2, ZB

assume that ΣX is known and, in my Section 2, I propose alternatives to their t-like statistics and

discuss the merits of the alternative tests. These include more attractive/simpler numerators

and clearly better denominators.

In Section 3 we will see that ZB’s approach to ΣX unknown involves extending the ideas of

Section 2 by incorporating an alternative strong assumption. Again, I present simpler numera-

tors and clearly better denominators.

Section 4 presents methods that do not require the random design assumption but that in-

volve alternative strong additional assumptions.

2 Testing H0 : a′β∗ = g0 with prior knowledge of ΣX

In this section I propose several alternative test statistics two of which seem to be clear improve-

ments on the statistic Tn(g0) proposed by ZB. One, t1, is a more direct application of basic sta-

tistical principals. Another, t5, is a relatively minor modification of Tn(g0) that clearly provides

more power.

2.1 Proposed Tests

I will derive test statistics using the theories of linear models and best linear prediction, cf. Chris-

tensen (2011). The proposed tests are straight-forward applications of the standard ideas of iden-
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tifying a parameter Par, an estimate of that parameter Est, finding an observable standard error

for Est, say SE(ESt), and using either normality or asymptotics to find the reference distribu-

tion (Est − Par)/SE(Est) ∼ t(df). When appealing to asymptotics t(∞) ∼ N(0, 1). The test

of Par = m0, simply replaces Par with m0, making for an observable test statistic that can be

compared to the reference distribution.

In ZB’s random design setting the linear model is closely related to best linear prediction. In

particular, the vector of regression coefficients is

β∗ = Σ−1X ΣXY ,

where ΣXY ≡ Cov(xi, yi) is unknown. The hypothesis now reduces to

a′Σ−1X ΣXY = g0

where everything but ΣXY is known. An obvious estimate of ΣXY , when the xis have mean zero,

is SXY ≡ 1
n
X ′Y .

The parameter is Par = a′Σ−1X ΣXY . The hypothesized value for the parameter is g0. The

estimate of the parameter is Est = a′Σ−1X X ′Y/n = a′Σ−1X SXY . This estimate is unconditionally

unbiased but not conditionally unbiased. Tarpey et al. (2014, 2015), Cook, Forzani, and Rothman

(2013, 2014), and Ding (2014, 2015) all discuss inadequacies of this estimate, as opposed to the

least squares estimate, but the least squares estimate only addresses the testing problem when

a′β∗ is estimable, which is a big restriction when p >> n. As always, the most difficult part of

developing a test is finding an appropriate standard error.

The simplest way to proceed with an unconditional test is to recognize that, with w̃i ≡

a′Σ−1X xiyi, the proposed estimate is the sample mean of the w̃is which are iid. The uncondi-

tional standard error can be obtained from the sample variance of the w̃is as
√
s2w̃/n. For what it

is worth,

s2w̃ =
1

n

[
a′Σ−1X X ′D2(Y )XΣ−1X a

]
−
(
a′Σ−1X SXY

)2
,
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where D(v) denotes a diagonal matrix with entries determined by the vector v. (Giving up

the mean zero assumptions would invalidate the iid assertion.) This leads to the intuitively

appealing test statistic

t1 ≡
a′Σ−1X SXY − g0√

s2w̃/n
.

If the predictor variables are multivariate normal, a different unconditional test is possible

because, cf. Tarpey et al. (2015),

Var(a′Σ−1X SXY ) = a′
σ2
yΣ−1X + Σ−1X ΣXY Σ′XY Σ−1X

n
a.

The unknown values σ2
y and ΣXY are easily estimated. Multivariate normality is crucial because

the variance is computed using the covariance matrix of a Wishart distribution. (The denomina-

tor of the variance would be n− 1 without all the zero mean assumptions.) This leads to the test

statistic

t2 ≡
a′Σ−1X SXY − g0√(

s2ya
′Σ−1X a+ a′Σ−1X SXY S ′XY Σ−1X a

)
/n
.

For p > n, the corresponding formula for the unconditional variance of the least squares estimate

involves a denominator that is negative, so obviously the assumptions behind the computation

have broken down and the least squares estimate cannot be used, cf. Tarpey et al. (2015).

Typically we prefer to analyze regression models conditionally. Conditional variances are

never larger than unconditional ones. To get a conditional standard error, observe that condi-

tional on X ,

Var(a′Σ−1X X ′Y/n) =
1

n2
a′Σ−1X X ′(σ2

εI)XΣ−1X a = σ2
ε

1

n2
a′Σ−1X X ′XΣ−1X a = σ2

ε

1

n
a′Σ−1X SXΣ−1X a

where SX ≡ (1/n)X ′X . When p >> n, since SX is a (not particularly good) estimate of ΣX ,

e.g. SX is not invertible, there may be advantages to replacing the estimate SX with the known
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parameter ΣX and using

Var(a′Σ−1X X ′Y/n)
.
= σ2

ε

1

n
a′Σ−1X a,

which is the the expected value of the conditional variance of the estimate (but is not the uncon-

ditional variance).

The standard error will be an estimated standard deviation so we also need to estimate σ2
ε .

Fortunately, with a random design, σ2
ε is just the best linear prediction error variance

σ2
ε = σ2

y − Σ′XY Σ−1X ΣXY

and the only term that is difficult to estimate is known. Thus, with the xs and ys having mean 0,

s2ε ≡
1

n

[
Y ′Y − Y ′XΣ−1X X ′Y/n

]
= s2y − S ′XY Σ−1X SXY .

The usual test statistic is the estimate minus the hypothesized value divided by the standard

error

t3 ≡
a′Σ−1X SXY − g0√
s2ε

1
n
a′Σ−1X SXΣ−1X a

or alternatively, using the approximate variance,

t4 ≡
a′Σ−1X SXY − g0√

s2ε
1
n
a′Σ−1X a

.

But again, these conditional test statistics are based on conditionally biased estimates of the

parameter a′β∗.

2.2 ZB’s Approach to Testing

We now consider two more test statistics, one of which has the form of the ZB test.

Consider a random sample w1, . . . , wn with E(wi) = µ and Var(wi) = σ2. Let J denote an n× 1
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vector of 1s and write the corresponding linear model

W = Jµ+ e.

The standard t statistic for testing µ = 0 is

t5 ≡
w̄·√
s2w/n

=

√
n(n− 1)

n

J ′W√
W ′[I − (1/n)JJ ′]W

,

which uses the variance estimate from the original (full) model.

Alternatively, one could estimate the variance using the (reduced) model that incorporates

the null hypothesis µ = 0. If µ = 0, E(W ′W ) = nσ2 so define σ̂2
w and the analogous test statistic

t6 ≡
w̄·√
σ̂2
w/n

=
J ′W√
W ′W

.

As seen in the next subsection, it is t6 that ZB employ.

In the one-sample problem, nobody uses t6 and it is pretty easy to see that t6 is not going

to work as well as t5. Just look at what happens when you replace the linear and quadratic

statistics with their expectations. The basic computations are E(J ′W ) = nµ, Var(J ′W ) = nσ2,

E {W ′[I − (1/n)JJ ′]W} = (n− 1)σ2, E(W ′W ) = nσ2 + nµ2. These lead to

|t5| .=

√
n(n− 1)

n

n|µ|√
(n− 1)σ2

=
√
n
|µ|
σ

and

|t6| .=
n|µ|√

nσ2 + nµ2
=
√
n

|µ|√
σ2 + µ2

.

As desired, when µ 6= 0, both values go to infinity as n → ∞. But the |t5| approximation is

always larger than the |t6| approximation. For example, take µ = 3 and σ2 = 1, then t5
.
=
√
n3

but t6
.
=
√
n 3√

10
<
√
n.
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2.3 Comparison of Tests

ZB’s test statistic is

Tn(g0) =

∑
i zi(yi − zig0)√∑
i[zi(yi − zig0)]2

where (z1, . . . , zn)′ ≡ Z is defined as

Z ≡ XΣ−1X a(a′Σ−1X a)−1

and in particular

zi(yi − zig0) = (a′Σ−1X a)−1a′Σ−1X xiyi − (a′Σ−1X a)−2a′Σ−1X xix
′
iΣ
−1
X ag0.

If we define W ≡ (w1, . . . , wn)′ with

wi ≡ zi(yi − zig0),

then, as in the previous subsection, the ZB test statistic is

Tn(g0) =
J ′W√
W ′W

= t6. (2.1)

Since the (yi, x
′
i)s are iid under the random design assumption, so are the wis, so Cov(W ) =

σ2I for some σ2. To see that E(W ) = 0 under the null model,

E(wi) = E [zi(yi − zig0)]

= (a′Σ−1X a)−1E
[
a′Σ−1X xiyi − (a′Σ−1X a)−1a′Σ−1X xix

′
iΣ
−1
X ag0

]
= (a′Σ−1X a)−1

[
a′Σ−1X ΣXY − (a′Σ−1X a)−1a′Σ−1X ΣXΣ−1X ag0

]
= (a′Σ−1X a)−1

[
a′β∗ − (a′Σ−1X a)−1a′Σ−1X ag0

]
= 0.

Of course this is the unconditional expectation that depends crucially on the random design
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assumption.

If the hypothesis is false, say a′β∗ = g0 + d, then E(wi) = (a′Σ−1X a)−1d, so as in the previous

subsection a one-sample linear model applies. An obvious improvement for Tn(g0) is to replace

its denominator and use t5.

We now compare the numerator of Tn(g0) to that of the t1 through t4 statistics. The numerator

is

Z ′(Y − Zg0) = Z ′Y − Z ′Zg0

= (a′Σ−1X a)−1a′Σ−1X X ′Y − (a′Σ−1X a)−1a′Σ−1X X ′XΣ−1X a(a′Σ−1X a)−1g0

= (a′Σ−1X a)−1
{
a′Σ−1X X ′Y −

[
(a′Σ−1X a)−1a′Σ−1X X ′XΣ−1X a

]
g0
}

= n(a′Σ−1X a)−1
({
a′Σ−1X SXY −

[
(a′Σ−1X a)−1a′Σ−1X SXΣ−1X a

]
g0
})
.

If SX → ΣX , then
[
(a′Σ−1X a)−1a′Σ−1X SXΣ−1X a

]
→ 1, so this would converge to n(a′Σ−1X a)−1 times

the numerator of the statistics in Subsection 2.1 (that have a more direct appeal).

I mentioned earlier the need to model ΣX . In applications to spatial, temporal, multivariate,

and longitudinal data, appropriate generalized least squares models, say,

Y = Xβ∗ + e, E(e) = 0, Cov(e) = σ2
εV,

are complicated by the need to model V as some function of a parameter vector (e.g. Chris-

tensen, 2001). Similarly, the testing results examined here should get more complicated if one

chooses a parametric model for ΣX . It seems unrealistic to hope that the problem of testing with

p >> n has a good solution without restricting the number of unknown parameters to be sub-

stantially less than the number of observations (regardless of whether you consider the number

of observations n or (p+1)×n). When that is not true, the only realistic hope for a good solution

is a Bayesian solution with very good prior information.
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2.4 Transformation Motivation

We now provide some motivation for the ZB testing procedure that will inform our discussion

of procedures for the case with ΣX unknown. The idea is to transform the original linear model

into a one-sample problem that involves a mean related to the parameter a′β∗.

The original linear model is

Y = Xβ∗ + e.

Let A be an oblique projection operator onto C(a), the column space of a, defined by A ≡

a(a′Σ−1X a)−1a′Σ−1X . Note that Za′ = XA′. Clearly, we can write

Y = XA′β∗ +X(I − A)′β∗ + e

= Z(a′β∗) +X(I − A)′β∗ + e.

Moreover,

Y − Zg0 = Z(a′β∗ − g0) +X(I − A)′β∗ + e,

where the dependent variable vector Y − Zg0 is observable.

In order to create a test for the parameter a′β∗ − g0 we want to multiply the model by some

matrix Q such that E[QX(I − A)′] = 0 and E(QZ) = kJ for some scalar k 6= 0 in order to get a

one-sample model

Q(Y − Zg0) = J(a′β∗ − g0)k +Qe

that provides an easy test of H0 : (a′β∗ − g0) = 0. If Q = D(q), where the elements of q are

qi = f(yi, x
′
i) for some function f , the elements of Q(Y − Zg0) will be iid.

Fortunately, as partially demonstrated earlier, taking Q = D(Z) does the trick. In particular,

with e independent of X and thus independent of Z,

E[D(Z)(Y − Zg0)] = E[D(Z)Z(a′β∗ − g0)] + E[D(Z)X(I − A)′β∗] + E[D(Z)e]
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= E[D(Z)Z(a′β∗ − g0)] +
a′Σ−1X ΣX(I − A)′

a′Σ−1X a
β∗ + 0

= E[D(Z)Z(a′β∗ − g0)] + 0

=
a′β∗ − g0
a′Σ−1X a

J.

3 Testing H0 : a′β∗ = g0 without prior knowledge of ΣX

Testing without knowledge of ΣX requires modification of the transformation method just dis-

cussed and requires additional assumptions to justify fitting linear models using penalized least

squares estimates.

The linear model is

Y = Xβ∗ + e.

Let Ma be the perpendicular projection operator onto C(a) defined by Ma ≡ a(a′a)−1a′. Redefine

Z so that Za′ ≡ XMa. Also take Ua to be a matrix with orthonormal columns and UaU
′
a =

(I −Ma). In particular, C(Ua) = C(a)⊥ = C(I −Ma). Unrelated to W and w̃i in the previous

section define W̃ ≡ XUa. Both W̃ and X(I − Ma) are model matrices for a reduced model

associated with tests involving a′β∗, cf. Christensen (2011, Section 3.3). Of course when a′β∗ is

not estimable, C(W̃ ) = C(X) and the hypothesis a′β∗ = g0 places no restriction on the linear

model, so some other assumptions need to come into play.

Clearly, we can write

Y = XMaβ∗ +X(I −Ma)β∗ + e

= Z(a′β∗) + W̃π∗ + e,

where π∗ ≡ U ′aβ∗. Moreover,

Y − Zg0 = Z(a′β∗ − g0) + W̃π∗ + e, (3.1)

11



where Y − Zg0 is an observable vector of dependent variables.

Once again, in order to create a test for the parameter a′β∗−g0, we want to multiply the model

by some diagonal matrix Q such that E[QW̃ ] = 0 and E(QZ) ∈ C(J). Without knowing ΣX , this

requires another strong assumption. ZB assume

Z = W̃γ + u, E(u) = 0, Cov(u) = σ2
uI, (3.2)

where the uis are iid and, crucially, u is independent of W̃ and the error e in the original linear

model.

This time take Q = D(Z − W̃γ) = D(u). In particular,

E[D(Z − W̃γ)(Y − Zg0)]

= E[D(Z − W̃γ)Z(a′β∗ − g0)] + E[D(Z − W̃γ)W̃π∗] + E[D(Z − W̃γ)e]

= E[D(u)Z(a′β∗ − g0)] + E[D(u)W̃π∗] + E[D(u)e]

= E[D(u)Z](a′β∗ − g0) + E[D(u)]E[W̃π∗] + E[D(u)]E[e]

= E[D(u)u](a′β∗ − g0) + 0 + 0

= Jσ2
u(a′β∗ − g0).

Again the rows of D(Z − W̃γ)(Y − Zg0) are iid so the methods of Subsection 2.2 can be used.

Of course the problem is that we do not know γ, so we need to replace it with a consistent

estimate obtained from fitting model (3.2). For p > n, the least squares estimate is typically not

consistent. In fact, when a′β∗ is not estimable, typically C(W̃ ) = Rn, so the least squares estimate

of Z − W̃γ is always 0. (If, for example, the rows of X contain exact replicates, C(W̃ ) 6= Rn.) In

any case, the proposed test statistic is

t5 =

√
n(n− 1)

n

J ′W√
W ′[I − (1/n)JJ ′]W

, where W = D(Z − W̃ γ̂)(Y − Zg0).
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To get useful results one needs to make enough assumptions so that, say, some penalized least

squares (regularized) estimate of γ will be consistent. Together with the linear model (3.2) for

Z, these assumptions amount to modeling ΣX . In particular, the use of penalized least squares

involves putting a lot of faith in the penalty function, to the point where one might almost as well

assume that the penalty function defines a prior distribution and develop a Bayesian analysis.

Rather than this method, ZB use a method based on

E[D(Z − W̃γ)(Y − Zg0 − W̃π∗)]

= E[D(Z − W̃γ)Z(a′β∗ − g0)] + E[D(Z − W̃γ)e]

= Jσ2
u(a′β∗ − g0).

One could again treat this as a one-sample problem but ZB use a different variance estimate

based on the assumption that ui = (zi− w̃′iγ∗) and (yi− zig0− w̃iπ∗) are independent. The former

has mean zero, as does the latter under the null hypothesis, so

Var[(zi − w̃′iγ∗)(yi − zig0 − w̃iπ∗)] = Var(zi − w̃′iγ∗)Var(yi − zig0 − w̃iπ∗) = σ2
uσ

2
ε .

Estimating each variance separately, σ2
u from (3.2) and σ2

ε from (3.1) with a′β∗ − g0 = 0, suggests

a test statistic
√
n
J ′D(Z − W̃γ)(Y − Zg0 − W̃π∗)

‖Z − W̃γ‖ ‖Y − Zg0 − W̃π∗‖

or, equivalently,
√
n

(Z − W̃γ)′(Y − Zg0 − W̃π∗)

‖Z − W̃γ‖ ‖Y − Zg0 − W̃π∗‖
.

Unfortunately, the variance estimate for σ2
ε is only valid under the null model so it suffers from

the same problems discussed in Section 2.

Another complication of ZB’s method is that, in addition to estimating γ consistently, since

π∗ is actually unknown, π∗ also requires consistent estimation. ZB estimate π∗ from (3.1) with
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a′β∗ − g0 = 0, i.e., the null model

Y − Zg0 = W̃π∗ + e.

This model has the same model matrix W̃ as (3.2), so it has the same problems in fitting it. ZB

use regularization to estimate π∗ and propose the test statistic

Sn ≡
√
n

(Z − W̃ γ̂)′(Y − Zg0 − W̃ π̂2)

‖Z − W̃ γ̂‖ ‖Y − Zg0 − W̃ π̂∗‖
.

An obvious improvement is to estimate σε with ‖Y −Zg0 −Zπ̂1 − W̃ π̂2‖/
√
n where π̂1 and π̂2

are estimated from

Y − Zg0 = Zπ1 + W̃π2 + e

with a penalty function that only shrinks π2. The fitted model does not involve the restricted

parameters of the original linear model (3.1). It is at least as general as (3.1), so it should provide

a reasonable estimate of σε when (3.1) is true.

Using my simpler numerator and an improved denominator based on the independence as-

sumptions made for model (3.2) leads to a test statistic for H0 : a′β∗ − g0 = 0 of

S̃ ≡
√
n

(Z − W̃ γ̂)′(Y − Zg0)
‖Z − W̃ γ̂‖ ‖Y − Zg0 − Zπ̂1 − W̃ π̂2‖

.

4 Nonrandom Predictors

I now present some alternative ideas for testing a′β∗ = g0 other than the random design transfor-

mation methods so effectively exploited by ZB. Again, these involve major additional assump-

tions some of which involve the appropriateness of penalized estimates. The most important

assumption is that the coefficient of a predictor variable in a given linear model has the same

meaning as the coefficient of that predictor variable in a larger linear model. This is an assump-

tion that is frequently decried in standard linear model theory.

By way of explicating the proposed method based on regularized linear models, I begin with
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a more traditional linear model approach that includes assumptions strong enough to solve the

problem. We focus on the case where a′β∗ is not estimable because (a) when it is estimable a

perfectly good theory already exists and (b) when p >> n relatively few of the possible a′β∗

parameters are estimable.

I continue the notation of Section 3.

4.1 Reduced Linear Model Method

It is well known, e.g. Christensen (2011, Section 3.3), that a reduced model associated with

testing a′β∗ = g0 is

(Y −Xb∗) = W̃η + e,

where b∗ is any known (computed) solution a′b∗ = g0. In particular, b∗ ≡ a[g0/(a
′a)] provides a

solution for which Xb∗ = Zg0. This is “the” reduced model in the sense that C(W̃ ) is uniquely

determined. Again, the problem with a′β∗ not being estimable is that the model matrix column

spaces have C(W̃ ) = C(X), so the “reduced” model is actually equivalent to the original model.

We have rewritten the original linear model as

Y − Zg0 = Zδ + W̃π∗ + e, δ ≡ (a′β∗ − g0), π∗ ≡ U ′aβ∗. (4.1)

This model has restrictions on the parameters δ and π∗, so it is apparently less general than an

unrestricted model, say,

Y − Zg0 = Zπ1 + W̃π2 + e. (4.2)

However, when a′β∗ is not estimable, C(W̃ ) = C(X), so this unrestricted model is still equivalent

to the original model. Regardless of estimability, there is no compelling reason to view π1 as

a′β∗ − g0 in the unrestricted model, but it is not a crazy thing to do and this section focuses on

testing π1 = 0.
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Now lets put on an additional strong assumption of a reduced model

E(Y − Zg0) = Zπ1 +X0π3, π1 = (a′β∗ − g0), C(X0) ⊂ C(X), C(X0) 6= C(X). (4.3)

Since C(X) = C(Z, W̃ ), there is no need to force C(X0) ⊂ C(W̃ ). I have chosen this assumption

because it is similar in spirit to the regularization method. There is no problem testing π1 = 0 in

this model. The |t| statistic is the square root of the F statistic which is

F =
(Y − Zg0)′(I −M0)Z[Z ′(I −M0)Z]−1Z ′(I −M0)(Y − Zg0)

(Y − Zg0)′{I −M0 − (I −M0)Z[Z ′(I −M0)Z]−1Z ′(I −M0)}(Y − Zg0)/[n− r(Z,X0)]
.

whereM0 ≡ X0(X
′
0X0)

−X0 is the perpendicular projection operator ontoC(X0). The test presup-

poses that you have some degrees of freedom for error in the reduced model. While C[Z,X0] ⊂

C(X), to get enough degrees of freedom to conduct a test you need rank[Z,X0] < rank(X).

Note that (I −M0)(Y −Zg0) = Y −Zg0−X0π̂3 where π̂3 is the least squares estimate from the

null model Y − Zg0 = X0π3 + e.

An alternative idea for deriving a test of π1 = 0, more similar to using the transformations

based on known parameters discussed earlier, is to treat π3 as known and test for π1 = 0 in the

linear model with one predictor variable,

E(Y − Zg0 −X0π3) = Zπ1.

With π3 known, Y − Zg0 − X0π3 is an observable dependent variable vector and the test is im-

mediate. The |t| statistic is the square root of the F statistic which is

F =
(Y − Zg0 −X0π3)

′Z(Z ′Z)−1Z ′(Y − Zg0 −X0π3)

(Y − Zg0 −X0π3)′[I − Z(Z ′Z)−1Z ′](Y − Zg0 −X0π3)/(n− 1)
.

Of course π3 is not known, so the obvious thing is to estimate it. The standard least squares

estimate comes from fitting (4.3) using analysis of covariance ideas. ZB’s approach of estimating
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things under the null model is more similar to an older ad hoc test that comes from fitting a

“stagewise regression,” e.g. Alley (1987), Casella (1988), and Christensen (1988) and, for testing

lack of fit, Neill and Johnson (1985). The stagewise approach is to test π1 = 0 in

(Y − Zg0 −X0π̂3) = Zπ1 + e (4.4)

where π̂3 is estimated from fitting

E(Y − Zg0) = X0π3 (4.5)

with least squares. One nice thing about the stagewise approach is that, under model (4.3) and

the hypothesis π1 = 0, the estimate of π3 is being obtained from a correct model (4.5) so it should

have good asymptotic properties under the null hypothesis.

The stagewise estimate of π1 is

π̂1S = [Z ′Z]−1Z ′(Y − Zg0 −X0π̂3) = [Z ′Z]−1Z ′(I −M0)(Y − Zg0)

whereas the least squares estimate of π1 from model (4.3) is

π̂1L = [Z ′(I −M0)Z]−1Z ′(I −M0)(Y − Zg0) = [Z ′(I −M0)Z]−1Z ′(Y − Zg0 −X0π̂3)

The difference is that stagewise does not adjust the predictor variable Z for fitting X0.

4.2 Regularized Linear Model Methods

Penalized least squares methods are valuable precisely because they give fitted values and pre-

dictions that are similar to fitting a reduced model. Regularization is used to obtain the ad-

vantages of fitting reduced models without actually specifying reduced models. Unfortunately,

regularization does not provide as clear an approach to testing as fitting reduced models. Rather

than explicitly choosing an X0 we accomplish a similar result by using penalized estimates.
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A stagewise approach to testing π1 = 0 is to perform the test associated with fitting

(Y − Zg0 − W̃ π̂2) = Zπ1 + e (4.6)

where π̂2 is estimated from fitting

E(Y − Zg0) = W̃π2 (4.7)

using penalized least squares. The assumptions necessary are that π1 = (a′β∗− g0), the relatively

weak assumptions necessary for getting a valid asymptotic test from (4.6) when π̂2 = π2, and

whatever assumptions are necessary for π̂2 to be consistent under penalized least squares and

the null model.

An alternative to the stagewise approach would be to fit model (4.2) directly using penalized

least squares where the penalty applies only to π2 and perform an asymptotic test of π1 = 0. For

this, the additional strong assumptions are that π1 = a′β∗ − g0, that π2 = U ′aβ∗, and that the true π2

has a small value of the penalty function.

In estimation problems one can think of penalization as just a device to improve estimation.

In this testing problem, you really need to believe that the true π2 displays characteristics that

are consistent with a small penalty function. It is not a great leap to assume that π2 has a prior

distribution determined by the penalty function and pursue a Bayesian test.

5 Conclusions

Regardless of the sizes of n and p, in a linear model

Y = Xβ∗ + e, E(e) = 0, Cov(e) = σ2
εI

it is only possible to test a nonestimable function a′β∗ by making additional strong assumptions

about the observable quantities and parameters.
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